Data-Driven Methods for Optimal Setting of Legacy Control Devices in Distribution Grids
No Thumbnail Available
Date
2024
Authors
Savasci, A.
Ceylan, O.
Paudyal, S.
Journal Title
Journal ISSN
Volume Title
Publisher
IEEE Computer Society
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
This study presents machine learning-based dispatch strategies for legacy voltage regulation devices, i.e., onload tap changers (OLTCs), step-voltage regulators (SVRs), and switched-capacitors (SCs) in modern distribution networks. The proposed approach utilizes k-nearest neighbor (KNN), random forest (RF), and neural networks (NN) to map nodal net active and reactive injections to the optimal legacy controls and resulting voltage magnitudes. To implement these strategies, first, an efficient optimal power flow (OPF) is formulated as a mixed-integer linear program that obtains optimal decisions of tap positions for OLTCs, SVRs, and on/off status of SCs. Then, training and testing datasets are generated by solving the OPF model for daily horizons with 1-hr resolution for varying loading and photovoltaic (PV) generation profile. Case studies on the 33-node feeder demonstrate high-accuracy mapping between the input feature and the output vector, which is promising for integrated Volt/VAr control schemes. © 2024 IEEE.
Description
Keywords
Distribution Grid, Machine Learning, Optimal Power Flow, Voltage Control
Turkish CoHE Thesis Center URL
Fields of Science
Citation
0
WoS Q
N/A
Scopus Q
N/A
Source
IEEE Power and Energy Society General Meeting -- 2024 IEEE Power and Energy Society General Meeting, PESGM 2024 -- 21 July 2024 through 25 July 2024 -- Seattle -- 203130