Data-Driven Methods for Optimal Setting of Legacy Control Devices in Distribution Grids

dc.authorscopusid 57214754719
dc.authorscopusid 26665865200
dc.authorscopusid 26423147300
dc.contributor.author Ceylan, Oğuzhan
dc.contributor.author Ceylan, O.
dc.contributor.author Paudyal, S.
dc.contributor.other Management Information Systems
dc.date.accessioned 2025-01-15T21:38:18Z
dc.date.available 2025-01-15T21:38:18Z
dc.date.issued 2024
dc.department Kadir Has University en_US
dc.department-temp Savasci A., Abdullah Gul University, Turkey; Ceylan O., Kadir Has University, Turkey; Paudyal S., Florida International University, United States en_US
dc.description.abstract This study presents machine learning-based dispatch strategies for legacy voltage regulation devices, i.e., onload tap changers (OLTCs), step-voltage regulators (SVRs), and switched-capacitors (SCs) in modern distribution networks. The proposed approach utilizes k-nearest neighbor (KNN), random forest (RF), and neural networks (NN) to map nodal net active and reactive injections to the optimal legacy controls and resulting voltage magnitudes. To implement these strategies, first, an efficient optimal power flow (OPF) is formulated as a mixed-integer linear program that obtains optimal decisions of tap positions for OLTCs, SVRs, and on/off status of SCs. Then, training and testing datasets are generated by solving the OPF model for daily horizons with 1-hr resolution for varying loading and photovoltaic (PV) generation profile. Case studies on the 33-node feeder demonstrate high-accuracy mapping between the input feature and the output vector, which is promising for integrated Volt/VAr control schemes. © 2024 IEEE. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/PESGM51994.2024.10760279
dc.identifier.issn 1944-9925
dc.identifier.scopus 2-s2.0-85212398232
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1109/PESGM51994.2024.10760279
dc.identifier.uri https://hdl.handle.net/20.500.12469/7132
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher IEEE Computer Society en_US
dc.relation.ispartof IEEE Power and Energy Society General Meeting -- 2024 IEEE Power and Energy Society General Meeting, PESGM 2024 -- 21 July 2024 through 25 July 2024 -- Seattle -- 203130 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Distribution Grid en_US
dc.subject Machine Learning en_US
dc.subject Optimal Power Flow en_US
dc.subject Voltage Control en_US
dc.title Data-Driven Methods for Optimal Setting of Legacy Control Devices in Distribution Grids en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication b80c3194-906c-4e78-a54c-e3cd1effc970
relation.isAuthorOfPublication.latestForDiscovery b80c3194-906c-4e78-a54c-e3cd1effc970
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files