Data-Driven Methods for Optimal Setting of Legacy Control Devices in Distribution Grids

dc.authorscopusid57214754719
dc.authorscopusid26665865200
dc.authorscopusid26423147300
dc.contributor.authorSavasci, A.
dc.contributor.authorCeylan, O.
dc.contributor.authorPaudyal, S.
dc.date.accessioned2025-01-15T21:38:18Z
dc.date.available2025-01-15T21:38:18Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-tempSavasci A., Abdullah Gul University, Turkey; Ceylan O., Kadir Has University, Turkey; Paudyal S., Florida International University, United Statesen_US
dc.description.abstractThis study presents machine learning-based dispatch strategies for legacy voltage regulation devices, i.e., onload tap changers (OLTCs), step-voltage regulators (SVRs), and switched-capacitors (SCs) in modern distribution networks. The proposed approach utilizes k-nearest neighbor (KNN), random forest (RF), and neural networks (NN) to map nodal net active and reactive injections to the optimal legacy controls and resulting voltage magnitudes. To implement these strategies, first, an efficient optimal power flow (OPF) is formulated as a mixed-integer linear program that obtains optimal decisions of tap positions for OLTCs, SVRs, and on/off status of SCs. Then, training and testing datasets are generated by solving the OPF model for daily horizons with 1-hr resolution for varying loading and photovoltaic (PV) generation profile. Case studies on the 33-node feeder demonstrate high-accuracy mapping between the input feature and the output vector, which is promising for integrated Volt/VAr control schemes. © 2024 IEEE.en_US
dc.identifier.citation0
dc.identifier.doi10.1109/PESGM51994.2024.10760279
dc.identifier.issn1944-9925
dc.identifier.scopus2-s2.0-85212398232
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1109/PESGM51994.2024.10760279
dc.identifier.urihttps://hdl.handle.net/20.500.12469/7132
dc.identifier.wosqualityN/A
dc.institutionauthorCeylan, Oğuzhan
dc.language.isoenen_US
dc.publisherIEEE Computer Societyen_US
dc.relation.ispartofIEEE Power and Energy Society General Meeting -- 2024 IEEE Power and Energy Society General Meeting, PESGM 2024 -- 21 July 2024 through 25 July 2024 -- Seattle -- 203130en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDistribution Griden_US
dc.subjectMachine Learningen_US
dc.subjectOptimal Power Flowen_US
dc.subjectVoltage Controlen_US
dc.titleData-Driven Methods for Optimal Setting of Legacy Control Devices in Distribution Gridsen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationb80c3194-906c-4e78-a54c-e3cd1effc970
relation.isAuthorOfPublication.latestForDiscoveryb80c3194-906c-4e78-a54c-e3cd1effc970

Files