Analysis of deep learning based path loss prediction from satellite images

dc.authorid Ates, Hasan/0000-0002-6842-1528
dc.authorid Gunturk, Bahadir/0000-0003-0779-9620
dc.authorwosid Ates, Hasan/M-5160-2013
dc.authorwosid Gunturk, Bahadir/G-1609-2019
dc.contributor.author Baykaş, Tunçer
dc.contributor.author Ates, Hasan F.
dc.contributor.author Baykas, Tuncer
dc.contributor.author Gunturk, Bahadir K.
dc.contributor.other Electrical-Electronics Engineering
dc.date.accessioned 2023-10-19T15:11:49Z
dc.date.available 2023-10-19T15:11:49Z
dc.date.issued 2021
dc.department-temp [Alam, Muhammad Z.; Ates, Hasan F.; Gunturk, Bahadir K.] Istanbul Medipol Univ, Sch Engn & Nat Sci, Istanbul, Turkey; [Baykas, Tuncer] Kadir Has Univ, Dept Elect Elect Engn, Istanbul, Turkey en_US
dc.description 29th IEEE Conference on Signal Processing and Communications Applications (SIU) -- JUN 09-11, 2021 -- ELECTR NETWORK en_US
dc.description.abstract Determining the channel model parameters of a wireless communication system, either by measurements or by running electromagnetic propagation simulations, is a time-consuming process. Any rapid deployment of network demands faster determination of at least major channel parameters. In this paper, we investigate the idea of using deep convolutional neural networks and satellite images for channel parameters (i.e., path loss exponent n and shadowing factor sigma) prediction in a cellular network with aerial base stations. Specifically, we investigate the performance dependency of the method on three different factors: height of the transmitter antenna, quantization levels of the channel parameters and architectural design of CNN. The results presented in this paper show a high prediction accuracy of the channel parameters in real-time. en_US
dc.description.sponsorship IEEE,IEEE Turkey Sect en_US
dc.description.sponsorship TUBITAK [215E324] en_US
dc.description.sponsorship This work is funded by TUBITAK Grant 215E324 en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1109/SIU53274.2021.9478009 en_US
dc.identifier.isbn 978-1-6654-3649-6
dc.identifier.scopus 2-s2.0-85111470200 en_US
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1109/SIU53274.2021.9478009
dc.identifier.uri https://hdl.handle.net/20.500.12469/5233
dc.identifier.wos WOS:000808100700250 en_US
dc.identifier.wosquality N/A
dc.khas 20231019-WoS en_US
dc.language.iso tr en_US
dc.publisher IEEE en_US
dc.relation.ispartof 29th Ieee Conference on Signal Processing and Communications Applications (Siu 2021) en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 5
dc.subject Channel parameters estimation en_US
dc.subject deep CNNs en_US
dc.subject image classification en_US
dc.title Analysis of deep learning based path loss prediction from satellite images en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication
relation.isAuthorOfPublication ab26f923-9923-42a2-b21e-2dd862cd92be
relation.isAuthorOfPublication.latestForDiscovery ab26f923-9923-42a2-b21e-2dd862cd92be
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files