Analysis of deep learning based path loss prediction from satellite images

No Thumbnail Available

Date

2021

Authors

Ates, Hasan F.
Baykas, Tuncer
Gunturk, Bahadir K.

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

Determining the channel model parameters of a wireless communication system, either by measurements or by running electromagnetic propagation simulations, is a time-consuming process. Any rapid deployment of network demands faster determination of at least major channel parameters. In this paper, we investigate the idea of using deep convolutional neural networks and satellite images for channel parameters (i.e., path loss exponent n and shadowing factor sigma) prediction in a cellular network with aerial base stations. Specifically, we investigate the performance dependency of the method on three different factors: height of the transmitter antenna, quantization levels of the channel parameters and architectural design of CNN. The results presented in this paper show a high prediction accuracy of the channel parameters in real-time.

Description

29th IEEE Conference on Signal Processing and Communications Applications (SIU) -- JUN 09-11, 2021 -- ELECTR NETWORK

Keywords

Channel parameters estimation, deep CNNs, image classification

Turkish CoHE Thesis Center URL

Fields of Science

Citation

1

WoS Q

N/A

Scopus Q

N/A

Source

29th Ieee Conference on Signal Processing and Communications Applications (Siu 2021)

Volume

Issue

Start Page

End Page