Channel estimation for visible light communications using neural networks

gdc.relation.journal 2016 International Joint Conference on Neural Networks (IJCNN) en_US
dc.contributor.author Yeşilkaya, Anıl
dc.contributor.author Karatalay, Onur
dc.contributor.author Öğrenci, Arif Selçuk
dc.contributor.author Panayırcı, Erdal
dc.contributor.other Electrical-Electronics Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2019-06-28T11:10:44Z
dc.date.available 2019-06-28T11:10:44Z
dc.date.issued 2016
dc.description.abstract Visible light communications (VLC) is an emerging field in technology and research. Estimating the channel taps is a major requirement for designing reliable communication systems. Due to the nonlinear characteristics of the VLC channel those parameters cannot be derived easily. They can be calculated by means of software simulation. In this work a novel methodology is proposed for the prediction of channel parameters using neural networks. Measurements conducted in a controlled experimental setup are used to train neural networks for channel tap prediction. Our experiment results indicate that neural networks can be effectively trained to predict channel taps under different environmental conditions. © 2016 IEEE. en_US]
dc.identifier.citationcount 16
dc.identifier.doi 10.1109/IJCNN.2016.7727215 en_US
dc.identifier.isbn 9781509006199
dc.identifier.scopus 2-s2.0-85007158483 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/1275
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 2016 International Joint Conference on Neural Networks (IJCNN)
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Channel estimation for visible light communications using neural networks en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Öğrenci, Arif Selçuk en_US
gdc.author.institutional Panayırcı, Erdal
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::conference output
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 325
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.startpage 320 en_US
gdc.description.volume 2016-October en_US
gdc.identifier.openalex W3099816092
gdc.identifier.wos WOS:000399925500043 en_US
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 3.9306873E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Signal Processing (eess.SP)
gdc.oaire.keywords FOS: Computer and information sciences
gdc.oaire.keywords N/A
gdc.oaire.keywords Computer Science - Information Theory
gdc.oaire.keywords Information Theory (cs.IT)
gdc.oaire.keywords FOS: Electrical engineering, electronic engineering, information engineering
gdc.oaire.keywords Computer Science - Neural and Evolutionary Computing
gdc.oaire.keywords Neural and Evolutionary Computing (cs.NE)
gdc.oaire.keywords Electrical Engineering and Systems Science - Signal Processing
gdc.oaire.popularity 1.05594E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 17
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 33
gdc.plumx.scopuscites 25
gdc.scopus.citedcount 25
gdc.wos.citedcount 18
relation.isAuthorOfPublication 5371ab5d-9cd9-4d1f-8681-a65b3d5d6add
relation.isAuthorOfPublication.latestForDiscovery 5371ab5d-9cd9-4d1f-8681-a65b3d5d6add
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Channel estimation for visible light communications using neural networks.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format
Description: