RSSI-Based Indoor Positioning via Adaptive Federated Kalman Filter

dc.authoridAYABAKAN, TARIK/0000-0003-0605-0378
dc.authoridKerestecioglu, Feza/0000-0001-9722-9458
dc.contributor.authorKerestecioğlu, Feza
dc.contributor.authorKerestecioglu, Feza
dc.date.accessioned2023-10-19T15:11:54Z
dc.date.available2023-10-19T15:11:54Z
dc.date.issued2022
dc.department-temp[Ayabakan, Tarik] Kadir Has Univ, Dept Elect Elect Engn, TR-34083 Istanbul, Turkey; [Ayabakan, Tarik] TCG Alemdar Command, TR-34083 Istanbul, Turkey; [Kerestecioglu, Feza] Kadir Has Univ, Dept Comp Engn, TR-34083 Istanbul, Turkeyen_US
dc.description.abstractIn this paper, federated Kalman filter (FKF) is applied for indoor positioning. Position information that is multi-laterated from the distance information obtained using the received signal strengths collected from several access points are processed in a FKF to estimate the position of the target. Two approaches are presented to adjust the information-sharing coefficients of FKF using online measurements. The data collected on a test bed composed of four access points are used to assess and compare the performances of the proposed algorithms. It is shown that the estimation error can be improved considerably by adjusting the information-sharing coefficients online.en_US
dc.identifier.citation4
dc.identifier.doi10.1109/JSEN.2021.3097249en_US
dc.identifier.endpage5308en_US
dc.identifier.issn1530-437X
dc.identifier.issn1558-1748
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-85110823145en_US
dc.identifier.scopusqualityQ1
dc.identifier.startpage5302en_US
dc.identifier.urihttps://doi.org/10.1109/JSEN.2021.3097249
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5273
dc.identifier.volume22en_US
dc.identifier.wosWOS:000770054800053en_US
dc.identifier.wosqualityQ2
dc.khas20231019-WoSen_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Sensors Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSensorsen_US
dc.subjectKalman filtersen_US
dc.subjectSensor fusionen_US
dc.subjectMathematical modelen_US
dc.subjectSensor systemsen_US
dc.subjectPosition measurementen_US
dc.subjectLocation awarenessen_US
dc.subjectIndoor positioningen_US
dc.subjectKalman filteren_US
dc.subjectsensor fusionen_US
dc.titleRSSI-Based Indoor Positioning via Adaptive Federated Kalman Filteren_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication3b717ed5-ce95-4f19-b9d0-f544789c28da
relation.isAuthorOfPublication.latestForDiscovery3b717ed5-ce95-4f19-b9d0-f544789c28da

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5273.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text