The Impact of Evolutionary Computation on Robotic Design: a Case Study With an Underactuated Hand Exoskeleton

dc.contributor.author Stroppa, Fabıo
dc.contributor.author Saraç Stroppa, Mine
dc.contributor.author Soylemez, Aleyna
dc.contributor.author Zyada, Mazhar Eid
dc.contributor.author Sarac, Mine
dc.contributor.author Stroppa, Fabio
dc.contributor.other Mechatronics Engineering
dc.contributor.other Computer Engineering
dc.date.accessioned 2024-10-15T19:42:45Z
dc.date.available 2024-10-15T19:42:45Z
dc.date.issued 2024
dc.department Kadir Has University en_US
dc.department-temp [Akbas, Baris; Yuksel, Huseyin Taner; Soylemez, Aleyna; Stroppa, Fabio] Kadir Has Univ, Comp Engn, Istanbul, Turkiye; [Zyada, Mazhar Eid; Sarac, Mine] Kadir Has Univ, Mechatron Engn, Istanbul, Turkiye en_US
dc.description.abstract Robotic exoskeletons can enhance human strength and aid people with physical disabilities. However, designing them to ensure safety and optimal performance presents significant challenges. Developing exoskeletons should incorporate specific optimization algorithms to find the best design. This study investigates the potential of Evolutionary Computation (EC) methods in robotic design optimization, with an underactuated hand exoskeleton (U-HEx) used as a case study. We propose improving the performance and usability of the U-HEx design, which was initially optimized using a naive brute-force approach, by integrating EC techniques such as Genetic Algorithm and Big Bang-Big Crunch Algorithm. Comparative analysis revealed that EC methods consistently yield more precise and optimal solutions than brute force in a significantly shorter time. This allowed us to improve the optimization by increasing the number of variables in the design, which was impossible with naive methods. The results show significant improvements in terms of the torque magnitude the device transfers to the user, enhancing its efficiency. These findings underline the importance of performing proper optimization while designing exoskeletons, as well as providing a significant improvement to this specific robotic design. en_US
dc.description.sponsorship TUBITAK [123M690, 121C145, 121C147] en_US
dc.description.sponsorship This work is funded by TUBITAK project number 123M690 and partially funded by TUB.ITAK project number 121C145 and 121C147. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/ICRA57147.2024.10611070
dc.identifier.endpage 5525 en_US
dc.identifier.isbn 9798350384581
dc.identifier.isbn 9798350384574
dc.identifier.issn 1050-4729
dc.identifier.issn 2577-087X
dc.identifier.scopus 2-s2.0-85202437095
dc.identifier.scopusquality Q2
dc.identifier.startpage 5519 en_US
dc.identifier.uri https://doi.org/10.1109/ICRA57147.2024.10611070
dc.identifier.wos WOS:001294576204041
dc.identifier.wosquality N/A
dc.institutionauthor Stroppa, Fabıo
dc.language.iso en en_US
dc.publisher Ieee en_US
dc.relation.ispartof IEEE International Conference on Robotics and Automation (ICRA) -- MAY 13-17, 2024 -- Yokohama, JAPAN en_US
dc.relation.ispartofseries IEEE International Conference on Robotics and Automation ICRA
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 2
dc.subject [No Keyword Available] en_US
dc.title The Impact of Evolutionary Computation on Robotic Design: a Case Study With an Underactuated Hand Exoskeleton en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication f8babe23-f015-4905-a50a-4e9567f9ee8d
relation.isAuthorOfPublication 6f4bfc6a-f6a1-4ef6-83b0-cd0753a2609b
relation.isAuthorOfPublication.latestForDiscovery f8babe23-f015-4905-a50a-4e9567f9ee8d
relation.isOrgUnitOfPublication 01f3d407-6823-4ad3-8298-0b6a2a6e5cff
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication.latestForDiscovery 01f3d407-6823-4ad3-8298-0b6a2a6e5cff

Files