Feature Extraction Based on Deep Learning for Some Traditional Machine Learning Methods
| gdc.relation.journal | UBMK 2018 - 3rd International Conference on Computer Science and Engineering | en_US |
| dc.contributor.author | Çayır, Aykut | |
| dc.contributor.author | Yenidoğan, Işıl | |
| dc.contributor.author | Dağ, Hasan | |
| dc.contributor.other | Management Information Systems | |
| dc.contributor.other | 03. Faculty of Economics, Administrative and Social Sciences | |
| dc.contributor.other | 01. Kadir Has University | |
| dc.date.accessioned | 2021-01-09T11:57:37Z | |
| dc.date.available | 2021-01-09T11:57:37Z | |
| dc.date.issued | 2018 | |
| dc.description.abstract | Deep learning is a subfield of machine learning and deep neural architectures can extract high level features automatically without handcraft feature engineering unlike traditional machine learning algorithms. In this paper, we propose a method, which combines feature extraction layers of a convolutional neural network with traditional machine learning algorithms, such as, support vector machine, gradient boosting machines, and random forest. All of the proposed hybrid models and the above mentioned machine learning algorithms are trained on three different datasets: MNIST, Fashion-MNIST, and CIFAR-10. Results show that the proposed hybrid models are more successful than traditional models while they are being trained from raw pixel values. In this study, we empower traditional machine learning algorithms for classification using feature extraction ability of deep neural network architectures and we are inspired by transfer learning methodology to this. | en_US |
| dc.identifier.citationcount | 26 | |
| dc.identifier.doi | 10.1109/UBMK.2018.8566383 | en_US |
| dc.identifier.isbn | 978-153867893-0 | |
| dc.identifier.scopus | 2-s2.0-85060661178 | en_US |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/3719 | |
| dc.identifier.uri | https://doi.org/10.1109/UBMK.2018.8566383 | |
| dc.language.iso | en | en_US |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
| dc.relation.ispartof | 2018 3rd International Conference on Computer Science and Engineering (UBMK) | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.title | Feature Extraction Based on Deep Learning for Some Traditional Machine Learning Methods | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Çayır, Aykut | en_US |
| gdc.author.institutional | Dağ, Hasan | |
| gdc.author.institutional | Daǧ, Hasan | en_US |
| gdc.author.institutional | Yenidoğan Dağ, Işıl | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.description.department | Fakülteler, İşletme Fakültesi, Yönetim Bilişim Sistemleri Bölümü | en_US |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.identifier.openalex | W2905230381 | |
| gdc.identifier.wos | WOS:000459847400095 | en_US |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 10.0 | |
| gdc.oaire.influence | 5.3249063E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | N/A | |
| gdc.oaire.popularity | 2.7881306E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.fwci | 0.858 | |
| gdc.openalex.normalizedpercentile | 0.9 | |
| gdc.opencitations.count | 37 | |
| gdc.plumx.crossrefcites | 3 | |
| gdc.plumx.mendeley | 48 | |
| gdc.plumx.scopuscites | 52 | |
| gdc.scopus.citedcount | 52 | |
| gdc.wos.citedcount | 37 | |
| relation.isAuthorOfPublication | e02bc683-b72e-4da4-a5db-ddebeb21e8e7 | |
| relation.isAuthorOfPublication | b095370a-50e0-4855-a720-bf27c9cf16a6 | |
| relation.isAuthorOfPublication.latestForDiscovery | e02bc683-b72e-4da4-a5db-ddebeb21e8e7 | |
| relation.isOrgUnitOfPublication | ff62e329-217b-4857-88f0-1dae00646b8c | |
| relation.isOrgUnitOfPublication | acb86067-a99a-4664-b6e9-16ad10183800 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | ff62e329-217b-4857-88f0-1dae00646b8c |