Feature Extraction Based on Deep Learning for Some Traditional Machine Learning Methods

gdc.relation.journal UBMK 2018 - 3rd International Conference on Computer Science and Engineering en_US
dc.contributor.author Çayır, Aykut
dc.contributor.author Yenidoğan, Işıl
dc.contributor.author Dağ, Hasan
dc.contributor.other Management Information Systems
dc.contributor.other 03. Faculty of Economics, Administrative and Social Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2021-01-09T11:57:37Z
dc.date.available 2021-01-09T11:57:37Z
dc.date.issued 2018
dc.description.abstract Deep learning is a subfield of machine learning and deep neural architectures can extract high level features automatically without handcraft feature engineering unlike traditional machine learning algorithms. In this paper, we propose a method, which combines feature extraction layers of a convolutional neural network with traditional machine learning algorithms, such as, support vector machine, gradient boosting machines, and random forest. All of the proposed hybrid models and the above mentioned machine learning algorithms are trained on three different datasets: MNIST, Fashion-MNIST, and CIFAR-10. Results show that the proposed hybrid models are more successful than traditional models while they are being trained from raw pixel values. In this study, we empower traditional machine learning algorithms for classification using feature extraction ability of deep neural network architectures and we are inspired by transfer learning methodology to this. en_US
dc.identifier.citationcount 26
dc.identifier.doi 10.1109/UBMK.2018.8566383 en_US
dc.identifier.isbn 978-153867893-0
dc.identifier.scopus 2-s2.0-85060661178 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/3719
dc.identifier.uri https://doi.org/10.1109/UBMK.2018.8566383
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 2018 3rd International Conference on Computer Science and Engineering (UBMK)
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.title Feature Extraction Based on Deep Learning for Some Traditional Machine Learning Methods en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Çayır, Aykut en_US
gdc.author.institutional Dağ, Hasan
gdc.author.institutional Daǧ, Hasan en_US
gdc.author.institutional Yenidoğan Dağ, Işıl
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Fakülteler, İşletme Fakültesi, Yönetim Bilişim Sistemleri Bölümü en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.identifier.openalex W2905230381
gdc.identifier.wos WOS:000459847400095 en_US
gdc.oaire.diamondjournal false
gdc.oaire.impulse 10.0
gdc.oaire.influence 5.3249063E-9
gdc.oaire.isgreen true
gdc.oaire.keywords N/A
gdc.oaire.popularity 2.7881306E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 0.858
gdc.openalex.normalizedpercentile 0.9
gdc.opencitations.count 37
gdc.plumx.crossrefcites 3
gdc.plumx.mendeley 48
gdc.plumx.scopuscites 52
gdc.scopus.citedcount 52
gdc.wos.citedcount 37
relation.isAuthorOfPublication e02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isAuthorOfPublication b095370a-50e0-4855-a720-bf27c9cf16a6
relation.isAuthorOfPublication.latestForDiscovery e02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files