Predicting Path Loss Distributions of a Wireless Communication System for Multiple Base Station Altitudes From Satellite Images

dc.contributor.author Shoer, Ibrahim
dc.contributor.author Gunturk, Bahadir K.
dc.contributor.author Ates, Hasan F.
dc.contributor.author Baykas, Tuncer
dc.contributor.other Electrical-Electronics Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2024-10-15T19:39:37Z
dc.date.available 2024-10-15T19:39:37Z
dc.date.issued 2022
dc.description.abstract It is expected that unmanned aerial vehicles (UAVs) will play a vital role in future communication systems. Optimum positioning of UAVs, serving as base stations, can be done through extensive field measurements or ray tracing simulations when the 3D model of the region of interest is available. In this paper, we present an alternative approach to optimize UAV base station altitude for a region. The approach is based on deep learning; specifically, a 2D satellite image of the target region is input to a deep neural network to predict path loss distributions for different UAV altitudes. The neural network is designed and trained to produce multiple path loss distributions in a single inference; thus, it is not necessary to train a separate network for each altitude. en_US
dc.description.sponsorship TUBITAK [215E324] en_US
dc.description.sponsorship This work was supported by TUBITAK Grant 215E324. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/ICIP46576.2022.9897467
dc.identifier.isbn 9781665496209
dc.identifier.issn 1522-4880
dc.identifier.uri https://doi.org/10.1109/ICIP46576.2022.9897467
dc.identifier.uri https://hdl.handle.net/20.500.12469/6334
dc.language.iso en en_US
dc.publisher Ieee en_US
dc.relation.ispartof IEEE International Conference on Image Processing (ICIP) -- OCT 16-19, 2022 -- Bordeaux, FRANCE en_US
dc.relation.ispartofseries IEEE International Conference on Image Processing ICIP
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject convolutional neural networks en_US
dc.subject deep learning en_US
dc.subject path loss estimation en_US
dc.subject UAV networks en_US
dc.title Predicting Path Loss Distributions of a Wireless Communication System for Multiple Base Station Altitudes From Satellite Images en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Baykaş, Tunçer
gdc.author.wosid Ates, Hasan/M-5160-2013
gdc.author.wosid Baykas, Tuncer/Y-8284-2019
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Shoer, Ibrahim; Gunturk, Bahadir K.; Ates, Hasan F.] Koc Univ, Dept Elect Engn, Istanbul, Turkey; [Shoer, Ibrahim; Gunturk, Bahadir K.; Ates, Hasan F.] Istanbul Medipol Univ, Sch Engn & Nat Sci, Istanbul, Turkey; [Shoer, Ibrahim; Baykas, Tuncer] Kadir Has Univ, Dept Elect Engn, Istanbul, Turkey en_US
gdc.description.endpage 2475 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.startpage 2471 en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.identifier.openalex W4308234029
gdc.identifier.wos WOS:001058109502113
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.6752798E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Vehicle network
gdc.oaire.keywords Aerial vehicle
gdc.oaire.keywords UAV networks
gdc.oaire.keywords Base stations
gdc.oaire.keywords Convolutional neural network
gdc.oaire.keywords Unmanned aerial vehicles (UAV)
gdc.oaire.keywords 3D modeling
gdc.oaire.keywords Deep Learning
gdc.oaire.keywords Vehicle to vehicle communications
gdc.oaire.keywords convolutional neural networks
gdc.oaire.keywords Deep neural networks
gdc.oaire.keywords Path loss estimation
gdc.oaire.keywords Satellite images
gdc.oaire.keywords Path loss
gdc.oaire.keywords Image segmentation
gdc.oaire.keywords Convolutional Neural Networks
gdc.oaire.keywords Loss estimation
gdc.oaire.keywords Path Loss Estimation
gdc.oaire.keywords Unmanned aerial vehicle network
gdc.oaire.keywords deep learning
gdc.oaire.keywords Deep learning
gdc.oaire.keywords Loss distribution
gdc.oaire.keywords path loss estimation
gdc.oaire.keywords Antennas
gdc.oaire.keywords Convolutional neural networks
gdc.oaire.keywords UAV Networks
gdc.oaire.popularity 3.1377159E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.openalex.fwci 0.796
gdc.openalex.normalizedpercentile 0.41
gdc.opencitations.count 2
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 4
gdc.wos.citedcount 1
relation.isAuthorOfPublication ab26f923-9923-42a2-b21e-2dd862cd92be
relation.isAuthorOfPublication.latestForDiscovery ab26f923-9923-42a2-b21e-2dd862cd92be
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files