Optimization of Graph Affinity Matrix With Heuristic Methods in Dimensionality Reduction of Hypespectral Images

dc.authorscopusid26665865200
dc.authorscopusid35105306400
dc.contributor.authorCeylan, O.
dc.contributor.authorTaskin, G.
dc.date.accessioned2023-10-19T15:05:34Z
dc.date.available2023-10-19T15:05:34Z
dc.date.issued2019
dc.department-tempCeylan, O., Kadir Has Üniversitesi, Yönetim Bilişim Sistemleri, Turkey; Taskin, G., Deprem Mühendisli?i Ve Afet Yönetimi Enstitüsü, Istanbul Teknik Universitesi, Turkeyen_US
dc.description27th Signal Processing and Communications Applications Conference, SIU 2019 --24 April 2019 through 26 April 2019 -- --151073en_US
dc.description.abstractHyperspectral images include hundreds of spectral bands, adjacent ones of which are often highly correlated and noisy, leading to a decrease in classification performance as well as a high increase in computational time. Dimensionality reduction techniques, especially the nonlinear ones, are very effective tools to solve these issues. Locality preserving projection (LPP) is one of those graph based methods providing a better representation of the high dimensional data in the low-dimensional space compared to linear methods. However, its performance heavily depends on the parameters of the affinity matrix, that are k-nearest neighbor and heat kernel parameters. Using simple methods like grid-search, optimization of these parameters becomes very computationally demanding process especially when considering a generalized heat kernel, including an exclusive parameter per feature in the high dimensional space. The aim of this paper is to show the effectiveness of the heuristic methods, including harmony search (HS) and particle swarm optimization (PSO), in graph affinity optimization constructed with a generalized heat kernel. The preliminary results obtained with the experiments on the hyperspectral images showed that HS performs better than PSO, and the heat kernel with multiple parameters achieves better performance than the heat kernel with a single parameter. © 2019 IEEE.en_US
dc.identifier.citation0
dc.identifier.doi10.1109/SIU.2019.8806533en_US
dc.identifier.isbn9781728119045
dc.identifier.scopus2-s2.0-85071987160en_US
dc.identifier.urihttps://doi.org/10.1109/SIU.2019.8806533
dc.identifier.urihttps://hdl.handle.net/20.500.12469/4953
dc.institutionauthorCeylan, Oğuzhan
dc.khas20231019-Scopusen_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof27th Signal Processing and Communications Applications Conference, SIU 2019en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAnd heat kernelsen_US
dc.subjectHeuristic methodsen_US
dc.subjectLocality preserving projectionsen_US
dc.subjectManifold learningen_US
dc.subjectOptimizationen_US
dc.subjectClustering algorithmsen_US
dc.subjectGraphic methodsen_US
dc.subjectMatrix algebraen_US
dc.subjectNearest neighbor searchen_US
dc.subjectOptimizationen_US
dc.subjectParticle swarm optimization (PSO)en_US
dc.subjectSignal processingen_US
dc.subjectSpectroscopyen_US
dc.subjectClassification performanceen_US
dc.subjectDimensionality reductionen_US
dc.subjectDimensionality reduction techniquesen_US
dc.subjectHeat kernelen_US
dc.subjectHigh dimensional spacesen_US
dc.subjectLocality preserving projectionsen_US
dc.subjectLow-dimensional spacesen_US
dc.subjectManifold learningen_US
dc.subjectHeuristic methodsen_US
dc.titleOptimization of Graph Affinity Matrix With Heuristic Methods in Dimensionality Reduction of Hypespectral Imagesen_US
dc.title.alternativeHiperspektral Görüntülerin Boyut İndirgemesinde Sezgisel Yöntemler ile Graf Benzerlik Matrisinin Eniyilemesien_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationb80c3194-906c-4e78-a54c-e3cd1effc970
relation.isAuthorOfPublication.latestForDiscoveryb80c3194-906c-4e78-a54c-e3cd1effc970

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
4953.pdf
Size:
1.26 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text