A Framework for Combined Recognition of Actions and Objects

gdc.relation.journal International Conference on Computer Vision and Graphics en_US
dc.contributor.author Ar, İlktan
dc.contributor.author Akgül, Yusuf Sinan
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2019-06-27T08:04:16Z
dc.date.available 2019-06-27T08:04:16Z
dc.date.issued 2012
dc.description.abstract This paper proposes a novel approach to recognize actions and objects within the context of each other. Assuming that the different actions involve different objects in image sequences and there is one-to-one relation between object and action type we present a Bayesian network based framework which combines motion patterns and object usage information to recognize actions/objects. More specifically our approach recognizes high-level actions and the related objects without any body-part segmentation hand tracking and temporal segmentation methods. Additionally we present a novel motion representation based on 3D Haar-like features which can be formed by depth color or both images. Our approach is also appropriate for object and action recognition where the involved object is partially or fully occluded. Finally experiments show that our approach improves the accuracy of both action and object recognition significantly. en_US]
dc.identifier.citationcount 1
dc.identifier.doi 10.1007/978-3-642-33564-8_32 en_US
dc.identifier.isbn 9783642335648
dc.identifier.isbn 9783642335631
dc.identifier.issn 0302-9743 en_US
dc.identifier.issn 0302-9743
dc.identifier.scopus 2-s2.0-84868021586 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/918
dc.identifier.uri https://doi.org/10.1007/978-3-642-33564-8_32
dc.language.iso en en_US
dc.publisher Springer-Verlag Berlin en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Action and object recognition en_US
dc.subject Bayesian network en_US
dc.subject Motion pattern en_US
dc.title A Framework for Combined Recognition of Actions and Objects en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Ar, İlktan en_US
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 271
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 264 en_US
gdc.description.volume 7594 en_US
gdc.identifier.openalex W201937503
gdc.identifier.wos WOS:000313005700032 en_US
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.9725507E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Action and object recognition
gdc.oaire.keywords Bayesian network
gdc.oaire.keywords Motion pattern
gdc.oaire.popularity 7.5019924E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 0.695
gdc.openalex.normalizedpercentile 0.52
gdc.opencitations.count 3
gdc.plumx.crossrefcites 3
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.wos.citedcount 1
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery b20623fc-1264-4244-9847-a4729ca7508c

Files