Distributed Energy Resource Allocation Using Multi-Objective Grasshopper Optimization Algorithm

dc.authorid ozdemir, aydogan/0000-0003-1331-2647
dc.authorid Ahmadi, Bahman/0000-0002-1745-2228
dc.authorwosid Ahmadi, Bahman/GSD-7380-2022
dc.authorwosid ozdemir, aydogan/A-2223-2016
dc.contributor.author Ahmadi, Bahman
dc.contributor.author Ceylan, Oğuzhan
dc.contributor.author Ceylan, Oguzhan
dc.contributor.author Ozdemir, Aydogan
dc.contributor.other Management Information Systems
dc.date.accessioned 2023-10-19T15:11:44Z
dc.date.available 2023-10-19T15:11:44Z
dc.date.issued 2021
dc.department-temp [Ahmadi, Bahman; Ozdemir, Aydogan] Istanbul Tech Univ, Dept Elect Engn, Istanbul, Turkey; [Ceylan, Oguzhan] Kadir Has Univ, Management & Informat Syst Dept, Istanbul, Turkey en_US
dc.description.abstract The penetration of small-scale generators (DGs) and battery energy storage systems (BESSs) into the distribution grid is growing rapidly and reaching a high percentage of installed generation capacity. These units can play a significant role in achieving various objectives if installed at suitable locations with appropriate sizes. In this paper, we present a new multi-objective optimization model to improve voltage profiles, minimize DG and BESS costs, and maximize energy transfer between off-peak and peak hours. We allocate and size DG and BESS units to achieve the first two objectives, while optimizing the operation strategy of BESS units for the last objective. The Multi-Objective Grasshopper Optimization Algorithm (MOGOA) is used to solve the formulated constrained optimization problem. The proposed formulation and solution algorithm are tested on 33-bus and 69-bus radial distribution networks. The advantages of the Pareto solutions are discussed from various aspects, and the Pareto solutions are subjected to cost analysis to identify the best solutions in the context of the worst voltage profiles at peak load times. Finally, the performance of the MOGOA algorithm is compared with the other heuristic optimization algorithms using two Pareto optimality indices. en_US
dc.description.sponsorship Advanced Evolutionary Computation for Smart Grid and Smart Community project [117E773]; Scientific and Technological Research Council of Turkey TUBITAK en_US
dc.description.sponsorship This research is funded as a part of 117E773 Advanced Evolutionary Computation for Smart Grid and Smart Community project under the framework of 1001 Project organized by The Scientific and Technological Research Council of Turkey TUBITAK. en_US
dc.identifier.citationcount 23
dc.identifier.doi 10.1016/j.epsr.2021.107564 en_US
dc.identifier.issn 0378-7796
dc.identifier.issn 1873-2046
dc.identifier.scopus 2-s2.0-85114477846 en_US
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.epsr.2021.107564
dc.identifier.uri https://hdl.handle.net/20.500.12469/5192
dc.identifier.volume 201 en_US
dc.identifier.wos WOS:000701767500005 en_US
dc.identifier.wosquality Q2
dc.khas 20231019-WoS en_US
dc.language.iso en en_US
dc.publisher Elsevier Science Sa en_US
dc.relation.ispartof Electric Power Systems Research en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 54
dc.subject Active Distribution Networks En_Us
dc.subject Distribution-Systems En_Us
dc.subject Optimal Placement En_Us
dc.subject Storage Systems En_Us
dc.subject Generation En_Us
dc.subject Wind En_Us
dc.subject Integration En_Us
dc.subject Reanalysis En_Us
dc.subject Dgs En_Us
dc.subject Active Distribution Networks
dc.subject Distribution-Systems
dc.subject Optimal Placement
dc.subject Storage Systems
dc.subject Distribution network planning en_US
dc.subject Generation
dc.subject Optimal planning en_US
dc.subject Wind
dc.subject Photovoltaic generation en_US
dc.subject Integration
dc.subject Wind energy generation en_US
dc.subject Reanalysis
dc.subject Battery energy storage system en_US
dc.subject Dgs
dc.subject Grasshopper optimization algorithm en_US
dc.title Distributed Energy Resource Allocation Using Multi-Objective Grasshopper Optimization Algorithm en_US
dc.type Article en_US
dc.wos.citedbyCount 40
dspace.entity.type Publication
relation.isAuthorOfPublication b80c3194-906c-4e78-a54c-e3cd1effc970
relation.isAuthorOfPublication.latestForDiscovery b80c3194-906c-4e78-a54c-e3cd1effc970
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5192.pdf
Size:
2.19 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text