Distributed energy resource allocation using multi-objective grasshopper optimization algorithm

dc.authoridozdemir, aydogan/0000-0003-1331-2647
dc.authoridAhmadi, Bahman/0000-0002-1745-2228
dc.authorwosidAhmadi, Bahman/GSD-7380-2022
dc.authorwosidozdemir, aydogan/A-2223-2016
dc.contributor.authorCeylan, Oğuzhan
dc.contributor.authorCeylan, Oguzhan
dc.contributor.authorOzdemir, Aydogan
dc.date.accessioned2023-10-19T15:11:44Z
dc.date.available2023-10-19T15:11:44Z
dc.date.issued2021
dc.department-temp[Ahmadi, Bahman; Ozdemir, Aydogan] Istanbul Tech Univ, Dept Elect Engn, Istanbul, Turkey; [Ceylan, Oguzhan] Kadir Has Univ, Management & Informat Syst Dept, Istanbul, Turkeyen_US
dc.description.abstractThe penetration of small-scale generators (DGs) and battery energy storage systems (BESSs) into the distribution grid is growing rapidly and reaching a high percentage of installed generation capacity. These units can play a significant role in achieving various objectives if installed at suitable locations with appropriate sizes. In this paper, we present a new multi-objective optimization model to improve voltage profiles, minimize DG and BESS costs, and maximize energy transfer between off-peak and peak hours. We allocate and size DG and BESS units to achieve the first two objectives, while optimizing the operation strategy of BESS units for the last objective. The Multi-Objective Grasshopper Optimization Algorithm (MOGOA) is used to solve the formulated constrained optimization problem. The proposed formulation and solution algorithm are tested on 33-bus and 69-bus radial distribution networks. The advantages of the Pareto solutions are discussed from various aspects, and the Pareto solutions are subjected to cost analysis to identify the best solutions in the context of the worst voltage profiles at peak load times. Finally, the performance of the MOGOA algorithm is compared with the other heuristic optimization algorithms using two Pareto optimality indices.en_US
dc.description.sponsorshipAdvanced Evolutionary Computation for Smart Grid and Smart Community project [117E773]; Scientific and Technological Research Council of Turkey TUBITAKen_US
dc.description.sponsorshipThis research is funded as a part of 117E773 Advanced Evolutionary Computation for Smart Grid and Smart Community project under the framework of 1001 Project organized by The Scientific and Technological Research Council of Turkey TUBITAK.en_US
dc.identifier.citation23
dc.identifier.doi10.1016/j.epsr.2021.107564en_US
dc.identifier.issn0378-7796
dc.identifier.issn1873-2046
dc.identifier.scopus2-s2.0-85114477846en_US
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.epsr.2021.107564
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5192
dc.identifier.volume201en_US
dc.identifier.wosWOS:000701767500005en_US
dc.identifier.wosqualityQ2
dc.khas20231019-WoSen_US
dc.language.isoenen_US
dc.publisherElsevier Science Saen_US
dc.relation.ispartofElectric Power Systems Researchen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectActive Distribution NetworksEn_Us
dc.subjectDistribution-SystemsEn_Us
dc.subjectOptimal PlacementEn_Us
dc.subjectStorage SystemsEn_Us
dc.subjectGenerationEn_Us
dc.subjectWindEn_Us
dc.subjectIntegrationEn_Us
dc.subjectReanalysisEn_Us
dc.subjectDgsEn_Us
dc.subjectActive Distribution Networks
dc.subjectDistribution-Systems
dc.subjectOptimal Placement
dc.subjectStorage Systems
dc.subjectDistribution network planningen_US
dc.subjectGeneration
dc.subjectOptimal planningen_US
dc.subjectWind
dc.subjectPhotovoltaic generationen_US
dc.subjectIntegration
dc.subjectWind energy generationen_US
dc.subjectReanalysis
dc.subjectBattery energy storage systemen_US
dc.subjectDgs
dc.subjectGrasshopper optimization algorithmen_US
dc.titleDistributed energy resource allocation using multi-objective grasshopper optimization algorithmen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationb80c3194-906c-4e78-a54c-e3cd1effc970
relation.isAuthorOfPublication.latestForDiscoveryb80c3194-906c-4e78-a54c-e3cd1effc970

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5192.pdf
Size:
2.19 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text