Musclenet: Smart Predictive Analysis for Muscular Activity Using Wearable Sensors

dc.contributor.author Gemici, M.
dc.contributor.author Korkmaz, K.
dc.contributor.author Ayhan, N.T.
dc.contributor.author Soylu, S.
dc.contributor.author Guc, F.
dc.contributor.author Ogrenci, A.S.
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2023-10-19T15:05:33Z
dc.date.available 2023-10-19T15:05:33Z
dc.date.issued 2022
dc.description 2022 Innovations in Intelligent Systems and Applications Conference, ASYU 2022 --7 September 2022 through 9 September 2022 -- --183936 en_US
dc.description.abstract Doing weightlifting training at home has become more popular during the pandemic. Unfortunately, exercising without professional help can lead to dangerous injuries such as muscle tearing. It is possible to create a smart system with machine learning to overcome muscle injuries and suggest an appropriate training program. The use of suitable algorithms enables us to develop programs that can perform predictions based on sEMG (Surface Electromyography) signals. In this study, sEMG signals are collected from the skin surface and features are extracted to be used in deep learning networks. A wearable hardware collects sEMG signals and transfers them to our mobile application via Bluetooth. The mobile application transfers data to the cloud to make predictions based on sEMG signals. We developed MuscleNET for training monitoring, injury prediction/detection, and training quality prediction. Initial measurements indicate that MuscleNET can be used effectively for training quality prediction and real time training monitoring. © 2022 IEEE. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/ASYU56188.2022.9925553 en_US
dc.identifier.isbn 9781665488945
dc.identifier.scopus 2-s2.0-85142727242 en_US
dc.identifier.uri https://doi.org/10.1109/ASYU56188.2022.9925553
dc.identifier.uri https://hdl.handle.net/20.500.12469/4946
dc.khas 20231019-Scopus en_US
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof Proceedings - 2022 Innovations in Intelligent Systems and Applications Conference, ASYU 2022 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject deep learning en_US
dc.subject feature extraction en_US
dc.subject machine learning en_US
dc.subject mobile application en_US
dc.subject muscle activity en_US
dc.subject signal processing en_US
dc.subject training support en_US
dc.subject Deep learning en_US
dc.subject Forecasting en_US
dc.subject Learning systems en_US
dc.subject Mobile computing en_US
dc.subject Wearable sensors en_US
dc.subject Deep learning en_US
dc.subject Features extraction en_US
dc.subject Machine-learning en_US
dc.subject Mobile applications en_US
dc.subject Muscle activities en_US
dc.subject Prediction-based en_US
dc.subject Quality prediction en_US
dc.subject Signal-processing en_US
dc.subject Surface electromyography signals en_US
dc.subject Training support en_US
dc.subject Muscle en_US
dc.title Musclenet: Smart Predictive Analysis for Muscular Activity Using Wearable Sensors en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57983665800
gdc.author.scopusid 57983199400
gdc.author.scopusid 57982723100
gdc.author.scopusid 57982723200
gdc.author.scopusid 57983665900
gdc.author.scopusid 7801329641
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.departmenttemp Gemici, M., Kadir Has University, Dept. of Electrical-Electronics Eng., Istanbul, Turkey; Korkmaz, K., Kadir Has University, Dept. of Computer Eng., Istanbul, Turkey; Ayhan, N.T., Kadir Has University, Dept. of Electrical-Electronics Eng., Istanbul, Turkey; Soylu, S., Kadir Has University, Dept. of Electrical-Electronics Eng., Istanbul, Turkey; Guc, F., Kadir Has University, Dept. of Computer Eng., Istanbul, Turkey; Ogrenci, A.S., Kadir Has University, Dept. of Electrical-Electronics Eng., Istanbul, Turkey en_US
gdc.description.endpage 6
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.startpage 1
gdc.identifier.openalex W4312288668
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Mobile computing
gdc.oaire.keywords muscle activity
gdc.oaire.keywords Learning systems
gdc.oaire.keywords feature extraction
gdc.oaire.keywords Muscle activities
gdc.oaire.keywords Features extraction
gdc.oaire.keywords deep learning
gdc.oaire.keywords Deep learning
gdc.oaire.keywords mobile application
gdc.oaire.keywords Surface electromyography signals
gdc.oaire.keywords training support
gdc.oaire.keywords Quality prediction
gdc.oaire.keywords Signal-processing
gdc.oaire.keywords machine learning
gdc.oaire.keywords Mobile applications
gdc.oaire.keywords Training support
gdc.oaire.keywords Wearable sensors
gdc.oaire.keywords Muscle
gdc.oaire.keywords signal processing
gdc.oaire.keywords Machine-learning
gdc.oaire.keywords Prediction-based
gdc.oaire.keywords Forecasting
gdc.oaire.popularity 2.19756E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.0
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery b20623fc-1264-4244-9847-a4729ca7508c

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
4946.pdf
Size:
772.92 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text