A New Fault-Tolerance Majority Voter Circuit for Quantum-Based Nano-Scale Digital Systems
No Thumbnail Available
Date
2025
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
Quantum-dot cellular automata (QCA) technology has gained attention lately due to its ability to reduce energy dissipation and minimize circuit area. However, the existing research shows that a critical challenge arises from the lack of circuit resistance in QCA systems when confronted with defects. This issue directly impacts circuit stability and output generation. Moreover, the 3-input majority gate (MV3) is a foundational component within QCA circuits, making its improvement crucial for developing fault-tolerant circuits. One approach is to design MV3 that incorporates essential quantum cells within a single clock cycle. Thus, this paper presents a unique cellular structure for the MV3 gate, utilizing simple quantum cells. The proposed gate, comprising only twelve cells, serves as a building block for QCA circuits. It boasts several key features, including low power consumption, efficient output polarity (+/- 9.93e00-1), and high reliability. Furthermore, to show the efficiency of the suggested gate, it is employed in realizing a 2:1 multiplexer and a full adder/subtractor. Lastly, the proposed MV3 gate is utilized to develop a simultaneous multi-logic gate which is producing several vital digital circuits, such as AND, OR, NOT, NAND, Copy, Subtractor, and Adder. The circuits are designed using QCADesigner and QCAPro, with power estimation included in the process. The comparative analysis reveals that the proposed structures significantly enhance the trade-off between complexity, fault tolerance, and power consumption compared to previous designs.
Description
Keywords
Nano-Electronic, Quantum-Dot Cellular Automata (QCA), Majority Gate, Fault-Tolerant, Central Processing Unit, Reliability
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Q2
Scopus Q
Q2

OpenCitations Citation Count
N/A
Source
Journal of Computational Electronics
Volume
24
Issue
5
Start Page
End Page
PlumX Metrics
Citations
CrossRef : 1
Scopus : 4
Captures
Mendeley Readers : 3
Google Scholar™

OpenAlex FWCI
15.05518629
Sustainable Development Goals
3
GOOD HEALTH AND WELL-BEING

7
AFFORDABLE AND CLEAN ENERGY

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

11
SUSTAINABLE CITIES AND COMMUNITIES

15
LIFE ON LAND

17
PARTNERSHIPS FOR THE GOALS


