A Monte Carlo Implementation of the Sage Algorithm for Joint Soft-Multiuser Decoding Channel Parameter Estimation and Code Acquisition

gdc.relation.journal IEEE Transactions on Signal Processing en_US
dc.contributor.author Kocian, Alexander
dc.contributor.author Panayırcı, Erdal
dc.contributor.author Poor, H. Vincent
dc.contributor.author Ruggieri, Marina
dc.contributor.other Electrical-Electronics Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2019-06-28T11:11:23Z
dc.date.available 2019-06-28T11:11:23Z
dc.date.issued 2010
dc.description.abstract This paper presents an iterative scheme for joint timing acquisition multi-channel parameter estimation and multiuser soft-data decoding. As an example an asynchronous convolutionally coded direct-sequence code-division multiple-access system is considered. The proposed receiver is derived within the space-alternating generalized expectation-maximization framework implying that convergence in likelihood is guaranteed under appropriate conditions in contrast to many other iterative receiver architectures. The proposed receiver iterates between joint posterior data estimation interference cancellation and single-user channel estimation and timing acquisition. A Markov Chain Monte Carlo technique namely Gibbs sampling is employed to compute the a posteriori probabilities of data symbols in a computationally efficient way. Computer simulations in flat Rayleigh fading show that the proposed algorithm is able to handle high system loads unlike many other iterative receivers. © 2006 IEEE. en_US]
dc.identifier.citationcount 2
dc.identifier.doi 10.1109/TSP.2010.2062181 en_US
dc.identifier.issn 1053-587X en_US
dc.identifier.issn 1053-587X
dc.identifier.issn 1941-0476
dc.identifier.scopus 2-s2.0-79953815669 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/1562
dc.identifier.uri https://doi.org/10.1109/TSP.2010.2062181
dc.language.iso en en_US
dc.relation.ispartof IEEE Transactions on Signal Processing
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Expectation maximization algorithms en_US
dc.subject Monte Carlo mthods en_US
dc.subject Multiaccess communication en_US
dc.title A Monte Carlo Implementation of the Sage Algorithm for Joint Soft-Multiuser Decoding Channel Parameter Estimation and Code Acquisition en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Panayirci, Erdal en_US
gdc.author.institutional Panayırcı, Erdal
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 5766
gdc.description.issue 11
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 5756 en_US
gdc.description.volume 58 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2167425099
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.7759826E-9
gdc.oaire.isgreen true
gdc.oaire.keywords multiaccess communication
gdc.oaire.keywords Expectation maximization algorithms; multiaccess communication; Monte Carlo mthods
gdc.oaire.keywords Expectation maximization algorithms
gdc.oaire.keywords Monte Carlo mthods
gdc.oaire.keywords Settore ING-INF/03 - TELECOMUNICAZIONI
gdc.oaire.keywords Multiaccess communication
gdc.oaire.keywords Monte Carlo methods
gdc.oaire.keywords 003
gdc.oaire.popularity 5.4924165E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0508 media and communications
gdc.oaire.sciencefields 05 social sciences
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 0.468
gdc.openalex.normalizedpercentile 0.47
gdc.opencitations.count 2
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 9
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
relation.isAuthorOfPublication 5371ab5d-9cd9-4d1f-8681-a65b3d5d6add
relation.isAuthorOfPublication.latestForDiscovery 5371ab5d-9cd9-4d1f-8681-a65b3d5d6add
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A Monte Carlo Implementation of the SAGE.pdf
Size:
817.55 KB
Format:
Adobe Portable Document Format
Description: