Data-Aided Autoregressive Sparse Channel Tracking for Ofdm Systems

dc.contributor.author Buyuksar, Ayse Betul
dc.contributor.author Şenol, Habib
dc.contributor.author Şenol, Habib
dc.contributor.author Erküçük, Serhat
dc.contributor.author Erküçük, Serhat
dc.contributor.author Cirpan, Hakan Ali
dc.contributor.other Computer Engineering
dc.contributor.other Electrical-Electronics Engineering
dc.date.accessioned 2019-06-27T08:02:01Z
dc.date.available 2019-06-27T08:02:01Z
dc.date.issued 2016
dc.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
dc.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
dc.description.abstract In order to meet future communication system requirements channel estimation over fast fading and frequency selective channels is crucial. In this paper Space Alternated Generalized Expectation Maximization Maximum a Posteriori (SAGE-MAP) based channel estimation algorithm is proposed for Orthogonal Frequency Division Multiplexing (OFDM) systems for Autoregressive (AR) modeled time-varying sparse channels. Also an initialization algorithm has been developed from the widely used sparse approximation algorithm Orthogonal Matching Pursuit (OMP) since the performance of SAGE algorithm strictly depends on initialization. The results show that multipath delay positions can be tracked successfully for every time instant using the proposed SAGE-MAP based approach. en_US]
dc.identifier.citationcount 1
dc.identifier.doi 10.1109/ISWCS.2016.7600941 en_US
dc.identifier.endpage 428
dc.identifier.isbn 97815090-20614
dc.identifier.issn 2154-0217 en_US
dc.identifier.issn 2154-0217
dc.identifier.scopus 2-s2.0-84994355371 en_US
dc.identifier.startpage 424 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/529
dc.identifier.uri https://doi.org/10.1109/ISWCS.2016.7600941
dc.identifier.wos WOS:000386654000078 en_US
dc.institutionauthor Şenol, Habib en_US
dc.institutionauthor Erküçük, Serhat en_US
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.journal 2016 13th International Symposium on Wireless Communication Systems (ISWCS) en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject OFDM en_US
dc.subject Autoregressive Model en_US
dc.subject Fast Time-Varying en_US
dc.subject Sage-Map en_US
dc.subject OMP en_US
dc.subject Sparse Channel Estimation en_US
dc.title Data-Aided Autoregressive Sparse Channel Tracking for Ofdm Systems en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication 2c09cda4-9d83-4836-8695-b36fc6c9c4ec
relation.isAuthorOfPublication 440e977b-46c6-40d4-b970-99b1e357c998
relation.isAuthorOfPublication.latestForDiscovery 2c09cda4-9d83-4836-8695-b36fc6c9c4ec
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Data-Aided Autoregressive Sparse Channel Tracking for OFDM Systems.pdf
Size:
367.66 KB
Format:
Adobe Portable Document Format
Description: