A Topology Detector Based Power Flow Approach for Radial and Weakly Meshed Distribution Networks
No Thumbnail Available
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Electrical and Electronics Engineers Inc.
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Power distribution networks may need to be switched from one radial configuration to another radial structure, providing better technical and economic benefits. Or, they may also need to switch from a radial configuration to a meshed one and vice-versa due to operational purposes. Thus the detection of the structure of the grid is important as this detection will improve the operational efficiency, provide technical benefits, and optimize economic performance. Accurate detection of the grid structure is needed for effective load flow analysis, which becomes increasingly computationally expensive as the network size increases. To perform a proper load flow analysis, one has to build the distribution load flow (DLF) matrix from scratch cost of which is unavoidable with the growing size of the network. This will considerably increase the computation time when the system size increases, compromising applicability in online implementations. In this study we introduce a novel graph-based model designed to rapidly detect transitions between radial and weakly meshed systems. By leveraging the characteristic properties of Sparse Matrix-Vector product (SpMV) operations, we accelerate power flow calculations without necessitating the complete reconstruction of the DLF matrix. With this approach we aim to reduce the computational costs and to improve the feasibility of near-online implementations. © 2024 IEEE.
Description
Keywords
Graph Laplacian matrix, power distribution networks, topology detection, weakly meshed distribution systems
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
N/A
Scopus Q
N/A
Source
2024 International Conference on Smart Energy Systems and Technologies: Driving the Advances for Future Electrification, SEST 2024 - Proceedings -- 2024 International Conference on Smart Energy Systems and Technologies, SEST 2024 -- 10 September 2024 through 12 September 2024 -- Torino -- 203123