Identifying Information Types in the Estimation of Informed Trading: an Improved Algorithm

dc.authorscopusid57189005583
dc.authorscopusid57144228200
dc.contributor.authorErsan,O.
dc.contributor.authorErsan, Oğuz
dc.contributor.authorGhachem,M.
dc.date.accessioned2024-10-15T19:42:32Z
dc.date.available2024-10-15T19:42:32Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-tempErsan O., International Trade and Finance Department, Faculty of Economics, Administrative and Social Sciences, Kadir Has University, Cibali Mah., Istanbul, Fatih, 34083, Turkey; Ghachem M., Department of Economics, Stockholm University, Stockholm, 106 91, Swedenen_US
dc.description.abstractThe growing frequency of news arrivals, partly fueled by the proliferation of data sources, has made the assumptions of the classical probability of informed trading (PIN) model outdated. In particular, the model’s assumption of a single type of information event no longer reflects the complexity of modern financial markets, making the accurate detection of information types (layers) crucial for estimating the probability of informed trading. We propose a layer detection algorithm to accurately find the number of distinct information types within a dataset. It identifies the number of information layers by clustering order imbalances and examining their homogeneity using properly constructed confidence intervals for the Skellam distribution. We show that our algorithm manages to find the number of information layers with very high accuracy both when uninformed buyer and seller intensities are equal and when they differ from each other (i.e., between 86% and 95% accuracy rates). We work with more than 500,000 simulations of quarterly datasets with various characteristics and make a large set of robustness checks. © 2024 by the authors.en_US
dc.identifier.citationcount0
dc.identifier.doi10.3390/jrfm17090409
dc.identifier.issn1911-8074
dc.identifier.issue9en_US
dc.identifier.scopus2-s2.0-85205070812
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.3390/jrfm17090409
dc.identifier.urihttps://hdl.handle.net/20.500.12469/6557
dc.identifier.volume17en_US
dc.language.isoenen_US
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en_US
dc.relation.ispartofJournal of Risk and Ficial Managementen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectcluster analysisen_US
dc.subjectinformation asymmetryen_US
dc.subjectlayer detection algorithmen_US
dc.subjectMPINen_US
dc.subjectmultilayer probability of informed tradingen_US
dc.subjectprivate informationen_US
dc.titleIdentifying Information Types in the Estimation of Informed Trading: an Improved Algorithmen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication668cc704-cc26-4a39-bb0f-5db2099bf1d3
relation.isAuthorOfPublication.latestForDiscovery668cc704-cc26-4a39-bb0f-5db2099bf1d3

Files