Improving Item-Based Recommendation Accuracy with User's Preferences on Apache Mahout
| gdc.relation.journal | 2016 IEEE International Conference on Big Data (Big Data) | en_US |
| dc.contributor.author | Jabakji, Ammar | |
| dc.contributor.author | Dağ, Hasan | |
| dc.contributor.other | Management Information Systems | |
| dc.contributor.other | 03. Faculty of Economics, Administrative and Social Sciences | |
| dc.contributor.other | 01. Kadir Has University | |
| dc.date.accessioned | 2019-06-27T08:01:54Z | |
| dc.date.available | 2019-06-27T08:01:54Z | |
| dc.date.issued | 2016 | |
| dc.description.abstract | Recommendation systems play a critical role in the Information Science application domain especially in e-commerce ecosystems. In almost all recommender systems statistical methods and machine learning techniques are used to recommend items to the users. Although the user-based collaborative filtering approaches have been applied successfully in many different domains some serious challenges remain especially in regards to large e-commerce sites for recommender systems need to manage millions of users and millions of catalog products. In particular the need to scan a vast number of potential neighbors makes it very hard to compute predictions. Many researchers have been trying to come up with solutions like using neighborhood-based collaborative filtering algorithms model-based collaborative filtering algorithms and text mining algorithms. Others have proposed new methods or have built various architectures/frameworks. In this paper we proposed a new data model based on users'preferences to improve item-based recommendation accuracy by using the Apache Mahout library. We also present details of the implementation of this model on a dataset taken from Amazon. Our experimental results indicate that the proposed model can achieve appreciable improvements in terms of recommendation quality. | en_US] |
| dc.identifier.citationcount | 3 | |
| dc.identifier.doi | 10.1109/BigData.2016.7840789 | en_US |
| dc.identifier.isbn | 9781467390057 | |
| dc.identifier.scopus | 2-s2.0-85015165361 | en_US |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/500 | |
| dc.identifier.uri | https://doi.org/10.1109/BigData.2016.7840789 | |
| dc.language.iso | en | en_US |
| dc.publisher | IEEE | en_US |
| dc.relation.ispartof | 2016 IEEE International Conference on Big Data (Big Data) | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Recommendation Systems | en_US |
| dc.subject | Collaboration Filtering Mahout | en_US |
| dc.subject | Mean Absolute Error (MAE) | en_US |
| dc.title | Improving Item-Based Recommendation Accuracy with User's Preferences on Apache Mahout | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Dağ, Hasan | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::conference output | |
| gdc.description.endpage | 1749 | |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 1742 | en_US |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W2584910405 | |
| gdc.identifier.wos | WOS:000399115001096 | en_US |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 2.0 | |
| gdc.oaire.influence | 3.1646559E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Recommendation Systems | |
| gdc.oaire.keywords | Collaboration Filtering Mahout | |
| gdc.oaire.keywords | Mean Absolute Error (MAE) | |
| gdc.oaire.popularity | 5.3960347E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.fwci | 0.843 | |
| gdc.openalex.normalizedpercentile | 0.78 | |
| gdc.opencitations.count | 8 | |
| gdc.plumx.crossrefcites | 2 | |
| gdc.plumx.mendeley | 28 | |
| gdc.plumx.scopuscites | 11 | |
| gdc.scopus.citedcount | 11 | |
| gdc.wos.citedcount | 3 | |
| relation.isAuthorOfPublication | e02bc683-b72e-4da4-a5db-ddebeb21e8e7 | |
| relation.isAuthorOfPublication.latestForDiscovery | e02bc683-b72e-4da4-a5db-ddebeb21e8e7 | |
| relation.isOrgUnitOfPublication | ff62e329-217b-4857-88f0-1dae00646b8c | |
| relation.isOrgUnitOfPublication | acb86067-a99a-4664-b6e9-16ad10183800 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | ff62e329-217b-4857-88f0-1dae00646b8c |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Improving Item-Based Recommendation Accuracy with User's Preferences on Apache Mahout.pdf
- Size:
- 1.02 MB
- Format:
- Adobe Portable Document Format
- Description: