Markdown Optimization with Generalized Weighted Least Squares Estimation

dc.contributor.author Hekimoğlu, Mustafa
dc.contributor.other Industrial Engineering
dc.date.accessioned 2023-10-19T15:12:49Z
dc.date.available 2023-10-19T15:12:49Z
dc.date.issued 2022
dc.department-temp [Hekimoglu, Mustafa] Kadir Has Univ, Dept Ind Engn, Hisaralti Cad 17, TR-34083 Istanbul, Turkey en_US
dc.description.abstract Retailers increasingly apply price markdowns for their seasonal products. Efficiency of these markdown applications is driven by the accuracy of empirical models, especially toward the end of a selling season. In the literature, recent sales are recognized to be more important than older sales data for estimating the current period's demand for a given markdown level. The importance difference between the weeks of a selling season is addressed by weighted least squares (WLS) method with continuous weight functions of time. This study suggests a generalization of the weight functions and a method for optimizing their shape and discretization parameters to stimulate the predictive accuracy of models. We find that addressing the importance difference of recent sales observations using our generalized weight functions improves the forecast accuracy by up to 20%, and most of the improvement stems from our weight discretization method. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/s44196-022-00163-9 en_US
dc.identifier.issn 1875-6891
dc.identifier.issn 1875-6883
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85143651525 en_US
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1007/s44196-022-00163-9
dc.identifier.uri https://hdl.handle.net/20.500.12469/5539
dc.identifier.volume 15 en_US
dc.identifier.wos WOS:000898534300001 en_US
dc.identifier.wosquality N/A
dc.institutionauthor Hekimoglu, Mustafa
dc.khas 20231019-WoS en_US
dc.language.iso en en_US
dc.publisher Springernature en_US
dc.relation.ispartof International Journal of Computational Intelligence Systems en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 1
dc.subject Robust Regression En_Us
dc.subject Selling Price En_Us
dc.subject Cross-Price En_Us
dc.subject Inventory En_Us
dc.subject Clearance En_Us
dc.subject Policies En_Us
dc.subject Replenishment En_Us
dc.subject Decisions En_Us
dc.subject Models En_Us
dc.subject Robust Regression
dc.subject Selling Price
dc.subject Cross-Price
dc.subject Inventory
dc.subject Clearance
dc.subject Policies
dc.subject Markdown optimization en_US
dc.subject Replenishment
dc.subject Weighted least squares en_US
dc.subject Decisions
dc.subject Pricing en_US
dc.subject Models
dc.subject Retail en_US
dc.title Markdown Optimization with Generalized Weighted Least Squares Estimation en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication 533132ce-5631-4068-91c5-2806df0f65bb
relation.isAuthorOfPublication.latestForDiscovery 533132ce-5631-4068-91c5-2806df0f65bb
relation.isOrgUnitOfPublication 28868d0c-e9a4-4de1-822f-c8df06d2086a
relation.isOrgUnitOfPublication.latestForDiscovery 28868d0c-e9a4-4de1-822f-c8df06d2086a

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5539.pdf
Size:
2.76 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text