Markdown Optimization with Generalized Weighted Least Squares Estimation

dc.contributor.authorHekimoglu, Mustafa
dc.date.accessioned2023-10-19T15:12:49Z
dc.date.available2023-10-19T15:12:49Z
dc.date.issued2022
dc.department-temp[Hekimoglu, Mustafa] Kadir Has Univ, Dept Ind Engn, Hisaralti Cad 17, TR-34083 Istanbul, Turkeyen_US
dc.description.abstractRetailers increasingly apply price markdowns for their seasonal products. Efficiency of these markdown applications is driven by the accuracy of empirical models, especially toward the end of a selling season. In the literature, recent sales are recognized to be more important than older sales data for estimating the current period's demand for a given markdown level. The importance difference between the weeks of a selling season is addressed by weighted least squares (WLS) method with continuous weight functions of time. This study suggests a generalization of the weight functions and a method for optimizing their shape and discretization parameters to stimulate the predictive accuracy of models. We find that addressing the importance difference of recent sales observations using our generalized weight functions improves the forecast accuracy by up to 20%, and most of the improvement stems from our weight discretization method.en_US
dc.identifier.citation0
dc.identifier.doi10.1007/s44196-022-00163-9en_US
dc.identifier.issn1875-6891
dc.identifier.issn1875-6883
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85143651525en_US
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s44196-022-00163-9
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5539
dc.identifier.volume15en_US
dc.identifier.wosWOS:000898534300001en_US
dc.identifier.wosqualityN/A
dc.institutionauthorHekimoglu, Mustafa
dc.khas20231019-WoSen_US
dc.language.isoenen_US
dc.publisherSpringernatureen_US
dc.relation.ispartofInternational Journal of Computational Intelligence Systemsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectRobust RegressionEn_Us
dc.subjectSelling PriceEn_Us
dc.subjectCross-PriceEn_Us
dc.subjectInventoryEn_Us
dc.subjectClearanceEn_Us
dc.subjectPoliciesEn_Us
dc.subjectReplenishmentEn_Us
dc.subjectDecisionsEn_Us
dc.subjectModelsEn_Us
dc.subjectRobust Regression
dc.subjectSelling Price
dc.subjectCross-Price
dc.subjectInventory
dc.subjectClearance
dc.subjectPolicies
dc.subjectMarkdown optimizationen_US
dc.subjectReplenishment
dc.subjectWeighted least squaresen_US
dc.subjectDecisions
dc.subjectPricingen_US
dc.subjectModels
dc.subjectRetailen_US
dc.titleMarkdown Optimization with Generalized Weighted Least Squares Estimationen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5539.pdf
Size:
2.76 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text