Opportunities and Challenges of Artificial Intelligence and Distributed Systems To Improve the Quality of Healthcare Service

dc.contributor.author Aminizadeh, Sarina
dc.contributor.author Heidari, Arash
dc.contributor.author Dehghan, Mahshid
dc.contributor.author Toumaj, Shiva
dc.contributor.author Rezaei, Mahsa
dc.contributor.author Navimipour, Nima Jafari
dc.contributor.author Unal, Mehmet
dc.contributor.other Computer Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2024-06-23T21:38:13Z
dc.date.available 2024-06-23T21:38:13Z
dc.date.issued 2024
dc.description Dehghan, Maziar/0000-0003-2106-6300; Heidari, Arash/0000-0003-4279-8551; Unal, Mehmet/0000-0003-1243-153X; Toumaj, Shiva/0000-0002-4828-9427 en_US
dc.description.abstract The healthcare sector, characterized by vast datasets and many diseases, is pivotal in shaping community health and overall quality of life. Traditional healthcare methods, often characterized by limitations in disease prevention, predominantly react to illnesses after their onset rather than proactively averting them. The advent of Artificial Intelligence (AI) has ushered in a wave of transformative applications designed to enhance healthcare services, with Machine Learning (ML) as a noteworthy subset of AI. ML empowers computers to analyze extensive datasets, while Deep Learning (DL), a specific ML methodology, excels at extracting meaningful patterns from these data troves. Despite notable technological advancements in recent years, the full potential of these applications within medical contexts remains largely untapped, primarily due to the medical community's cautious stance toward novel technologies. The motivation of this paper lies in recognizing the pivotal role of the healthcare sector in community well-being and the necessity for a shift toward proactive healthcare approaches. To our knowledge, there is a notable absence of a comprehensive published review that delves into ML, DL and distributed systems, all aimed at elevating the Quality of Service (QoS) in healthcare. This study seeks to bridge this gap by presenting a systematic and organized review of prevailing ML, DL, and distributed system algorithms as applied in healthcare settings. Within our work, we outline key challenges that both current and future developers may encounter, with a particular focus on aspects such as approach, data utilization, strategy, and development processes. Our study findings reveal that the Internet of Things (IoT) stands out as the most frequently utilized platform (44.3 %), with disease diagnosis emerging as the predominant healthcare application (47.8 %). Notably, discussions center significantly on the prevention and identification of cardiovascular diseases (29.2 %). The studies under examination employ a diverse range of ML and DL methods, along with distributed systems, with Convolutional Neural Networks (CNNs) being the most commonly used (16.7 %), followed by Long Short -Term Memory (LSTM) networks (14.6 %) and shallow learning networks (12.5 %). In evaluating QoS, the predominant emphasis revolves around the accuracy parameter (80 %). This study highlights how ML, DL, and distributed systems reshape healthcare. It contributes to advancing healthcare quality, bridging the gap between technology and medical adoption, and benefiting practitioners and patients. en_US
dc.identifier.citationcount 4
dc.identifier.doi 10.1016/j.artmed.2024.102779
dc.identifier.issn 0933-3657
dc.identifier.issn 1873-2860
dc.identifier.scopus 2-s2.0-85183950834
dc.identifier.uri https://doi.org/10.1016/j.artmed.2024.102779
dc.identifier.uri https://hdl.handle.net/20.500.12469/5770
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Artificial Intelligence in Medicine
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Healthcare en_US
dc.subject Machine learning en_US
dc.subject Deep learning en_US
dc.subject Quality of service en_US
dc.subject Neural networks en_US
dc.subject Distributed platforms en_US
dc.title Opportunities and Challenges of Artificial Intelligence and Distributed Systems To Improve the Quality of Healthcare Service en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Dehghan, Maziar/0000-0003-2106-6300
gdc.author.id Heidari, Arash/0000-0003-4279-8551
gdc.author.id Unal, Mehmet/0000-0003-1243-153X
gdc.author.id Toumaj, Shiva/0000-0002-4828-9427
gdc.author.institutional Jafari Navimipour, Nima
gdc.author.scopusid 57575788500
gdc.author.scopusid 57217424609
gdc.author.scopusid 58861946100
gdc.author.scopusid 57374440700
gdc.author.scopusid 58223159300
gdc.author.scopusid 55897274300
gdc.author.scopusid 54891556200
gdc.author.wosid Dehghan, Maziar/F-8525-2013
gdc.author.wosid Heidari, Arash/AAK-9761-2021
gdc.author.wosid Unal, Mehmet/W-2804-2018
gdc.bip.impulseclass C2
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Aminizadeh, Sarina] Islamic Azad Univ, Med Fac, Tabriz Branch, Tabriz, Iran; [Heidari, Arash] Halic Univ, Dept Software Engn, TR-34060 Istanbul, Turkiye; [Dehghan, Mahshid] Tabriz Univ Med Sci, Fac Med, Tabriz, Iran; [Toumaj, Shiva] Urmia Univ Med Sci, Orumiyeh, Iran; [Rezaei, Mahsa] Tabriz Univ Med Sci, Fac Surg, Tabriz, Iran; [Navimipour, Nima Jafari] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, Touliu 64002, Taiwan; [Navimipour, Nima Jafari; Stroppa, Fabio] Kadir Has Univ, Fac Engn & Nat Sci, Dept Comp Engn, Istanbul, Turkiye; [Unal, Mehmet] Bahcesehir Univ, Sch Engn & Nat Sci, Dept Math, Istanbul, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 102779
gdc.description.volume 149 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4391188276
gdc.identifier.pmid 38462281
gdc.identifier.wos WOS:001175753600001
gdc.oaire.diamondjournal false
gdc.oaire.impulse 116.0
gdc.oaire.influence 7.358837E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Machine Learning
gdc.oaire.keywords Computer Communication Networks
gdc.oaire.keywords Artificial Intelligence
gdc.oaire.keywords Quality of Life
gdc.oaire.keywords Humans
gdc.oaire.keywords Quality of Health Care
gdc.oaire.popularity 4.2824524E-8
gdc.oaire.publicfunded false
gdc.openalex.fwci 32.274
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 59
gdc.plumx.mendeley 280
gdc.plumx.pubmedcites 21
gdc.plumx.scopuscites 138
gdc.scopus.citedcount 144
gdc.wos.citedcount 95
relation.isAuthorOfPublication 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isAuthorOfPublication.latestForDiscovery 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files