A New Service Composition Method in the Cloud-Based Internet of Things Environment Using a Grey Wolf Optimization Algorithm and Mapreduce Framework

dc.contributor.author Vakili,A.
dc.contributor.author Al-Khafaji,H.M.R.
dc.contributor.author Darbandi,M.
dc.contributor.author Heidari,A.
dc.contributor.author Jafari Navimipour,N.
dc.contributor.author Unal,M.
dc.contributor.other Computer Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2024-06-23T21:37:34Z
dc.date.available 2024-06-23T21:37:34Z
dc.date.issued 2024
dc.description Al-Khafaji, Hamza Mohammed Ridha/0000-0003-3620-581X; Heidari, Arash/0000-0003-4279-8551 en_US
dc.description.abstract Cloud computing is quickly becoming a common commercial model for software delivery and services, enabling companies to save maintenance, infrastructure, and labor expenses. Also, Internet of Things (IoT) apps are designed to ease developers' and users' access to networks of smart services, devices, and data. Although cloud services give nearly infinite resources, their reach is constrained. Designing coherent and organized apps is made possible by integrating the cloud and IoT. Expanding facilities by combining services is a critical component of this technology. Various services may be presented in this environment based on the user's demands. Considering their Quality of Service (QoS) attributes, discovering the appropriate available atomic services to construct the needed composite service with their collaboration in an orchestration model is an NP-hard issue. This article suggests a service composition method using Grey Wolf Optimization (GWO) and MapReduce framework to compose services with optimized QoS. The simulation outcomes illustrate cost, availability, response time, and energy-saving improvements through the suggested approach. Comparing the suggested technique to three baseline algorithms, the average gain is a 40% improvement in energy savings, a 14% decrease in response time, an 11% increase in availability, and a 24% drop in cost. © 2024 John Wiley & Sons Ltd. en_US
dc.identifier.citationcount 5
dc.identifier.doi 10.1002/cpe.8091
dc.identifier.issn 1532-0626
dc.identifier.issn 1532-0634
dc.identifier.scopus 2-s2.0-85196662685
dc.identifier.uri https://doi.org/10.1002/cpe.8091
dc.language.iso en en_US
dc.publisher John Wiley and Sons Ltd en_US
dc.relation.ispartof Concurrency and Computation: Practice and Experience en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject cloud computing en_US
dc.subject grey wolf optimization en_US
dc.subject IoT en_US
dc.subject MapReduce en_US
dc.subject service composition en_US
dc.title A New Service Composition Method in the Cloud-Based Internet of Things Environment Using a Grey Wolf Optimization Algorithm and Mapreduce Framework en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Al-Khafaji, Hamza Mohammed Ridha/0000-0003-3620-581X
gdc.author.id Heidari, Arash/0000-0003-4279-8551
gdc.author.institutional Jafari Navimipour, Nima
gdc.author.scopusid 57192938408
gdc.author.scopusid 57205482293
gdc.author.scopusid 54897517900
gdc.author.scopusid 57217424609
gdc.author.scopusid 55897274300
gdc.author.scopusid 57254381700
gdc.author.wosid Al-Khafaji, Hamza Mohammed Ridha/D-6335-2019
gdc.author.wosid Heidari, Arash/AAK-9761-2021
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp Vakili A., Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Al-Khafaji H.M.R., Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Hillah, Iraq; Darbandi M., Pôle Universitaire Léonard de Vinci, Paris, France; Heidari A., Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran, Department of Computer Engineering, Faculty of Engineering and Natural Science, Istanbul Atlas University, Istanbul, Turkey; Jafari Navimipour N., Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey, Future Technology Research Center, National Yunlin University of Science and Technology, Douliou, Taiwan; Unal M., Department of Mathematics, School of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Turkey en_US
gdc.description.issue 16 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 36 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W4397019604
gdc.identifier.wos WOS:001224511600001
gdc.oaire.diamondjournal false
gdc.oaire.impulse 87.0
gdc.oaire.influence 6.4939187E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.1582375E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 60.348
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 0
gdc.plumx.mendeley 25
gdc.plumx.newscount 2
gdc.plumx.scopuscites 108
gdc.scopus.citedcount 108
gdc.wos.citedcount 100
relation.isAuthorOfPublication 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isAuthorOfPublication.latestForDiscovery 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files