Assessing the impact of minor modifications on the interior structure of GRU: GRU1 and GRU2
dc.authorid | Yiğit, Gülsüm/0000-0001-7010-169X | |
dc.authorid | Amasyali, Fatih/0000-0002-0404-5973 | |
dc.authorwosid | Yiğit, Gülsüm/IVU-8380-2023 | |
dc.authorwosid | Amasyali, Fatih/AAZ-4791-2020 | |
dc.contributor.author | Yiğit, Gülsüm | |
dc.contributor.author | Amasyali, Mehmet Fatih | |
dc.date.accessioned | 2023-10-19T15:13:04Z | |
dc.date.available | 2023-10-19T15:13:04Z | |
dc.date.issued | 2022 | |
dc.department-temp | [Yigit, Gulsum] Kadir Has Univ, Fac Engn & Nat Sci, Comp Engn Dept, Istanbul, Turkey; [Yigit, Gulsum; Amasyali, Mehmet Fatih] Yildiz Tech Univ, Fac Elect & Elect, Dept Comp Engn, Istanbul, Turkey | en_US |
dc.description.abstract | In this study, two GRU variants named GRU1 and GRU2 are proposed by employing simple changes to the internal structure of the standard GRU, which is one of the popular RNN variants. Comparative experiments are conducted on four problems: language modeling, question answering, addition task, and sentiment analysis. Moreover, in the addition task, curriculum learning and anti-curriculum learning strategies, which extend the training data having examples from easy to hard or from hard to easy, are comparatively evaluated. Accordingly, the GRU1 and GRU2 variants outperformed the standard GRU. In addition, the curriculum learning approach, in which the training data is expanded from easy to difficult, improves the performance considerably. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBTAK) [120E100]; TUBTAK - BDEB 2211/A national fellowship program | en_US |
dc.description.sponsorship | This research is supported by The Scientific and Technological Research Council of Turkey (TuBTAK) in part of the project with 120E100 Grant number. G. Yigit is supported by TUBTAK - BDEB 2211/A national fellowship program for Ph.D. studies. | en_US |
dc.identifier.citation | 3 | |
dc.identifier.doi | 10.1002/cpe.6775 | en_US |
dc.identifier.issn | 1532-0626 | |
dc.identifier.issn | 1532-0634 | |
dc.identifier.issue | 20 | en_US |
dc.identifier.scopus | 2-s2.0-85121038213 | en_US |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1002/cpe.6775 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/5598 | |
dc.identifier.volume | 34 | en_US |
dc.identifier.wos | WOS:000729630100001 | en_US |
dc.identifier.wosquality | N/A | |
dc.khas | 20231019-WoS | en_US |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.relation.ispartof | Concurrency and Computation-Practice & Experience | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | curriculum learning | en_US |
dc.subject | gated recurrent units | en_US |
dc.subject | recurrent neural networks | en_US |
dc.subject | Seq2seq | en_US |
dc.subject | short-term dependency | en_US |
dc.title | Assessing the impact of minor modifications on the interior structure of GRU: GRU1 and GRU2 | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 363c092e-cd4b-400e-8261-ca5b99b1bea9 | |
relation.isAuthorOfPublication.latestForDiscovery | 363c092e-cd4b-400e-8261-ca5b99b1bea9 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 5598.pdf
- Size:
- 1.23 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tam Metin / Full Text