New Infinite Families of 2-Edge Graphs

dc.contributor.author Çalışkan, Cafer
dc.contributor.author Chee, Yeow Meng
dc.date.accessioned 2019-06-27T08:02:55Z
dc.date.available 2019-06-27T08:02:55Z
dc.date.issued 2014
dc.description.abstract A graph G of order n is called t-edge-balanced if G satisfies the property that there exists a positive for which every graph of order n and size t is contained in exactly distinct subgraphs of Kn isomorphic to G. We call the index of G. In this article we obtain new infinite families of 2-edge-balanced graphs. en_US]
dc.identifier.doi 10.1002/jcd.21367 en_US
dc.identifier.issn 1063-8539
dc.identifier.issn 1520-6610
dc.identifier.scopus 2-s2.0-84899410752 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/709
dc.identifier.uri https://doi.org/10.1002/jcd.21367
dc.language.iso en en_US
dc.publisher Wiley-Blackwell en_US
dc.relation.ispartof Journal of Combinatorial Designs
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Graphical t-designs en_US
dc.subject T-edge-balanced graphs en_US
dc.title New Infinite Families of 2-Edge Graphs en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Çalışkan, Cafer en_US
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 305
gdc.description.issue 7
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 291 en_US
gdc.description.volume 22 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W1934426692
gdc.identifier.wos WOS:000334394800002 en_US
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.6970615E-9
gdc.oaire.isgreen true
gdc.oaire.keywords T-edge-balanced graphs
gdc.oaire.keywords Graphical t-designs
gdc.oaire.keywords \(t\)-edge-balanced graphs
gdc.oaire.keywords Graph designs and isomorphic decomposition
gdc.oaire.keywords Isomorphism problems in graph theory (reconstruction conjecture, etc.) and homomorphisms (subgraph embedding, etc.)
gdc.oaire.keywords Structural characterization of families of graphs
gdc.oaire.keywords graphical \(t\)-design
gdc.oaire.popularity 6.0518146E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 0102 computer and information sciences
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 0.32839027
gdc.openalex.normalizedpercentile 0.62
gdc.opencitations.count 1
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 1
gdc.relation.journal Journal of Combinatorial Designs
gdc.scopus.citedcount 1
gdc.virtual.author Çalışkan, Cafer
gdc.wos.citedcount 1
relation.isAuthorOfPublication 1cda790d-8284-4626-b5a6-bbd65355a94c
relation.isAuthorOfPublication.latestForDiscovery 1cda790d-8284-4626-b5a6-bbd65355a94c
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
New Infinite Families of 2‐Edge‐Balanced Graphs.pdf
Size:
273.71 KB
Format:
Adobe Portable Document Format
Description: