Smart Stethoscope

dc.contributor.author Türker, Mehmet Nasuhcan
dc.contributor.author Çevik, Mesut
dc.contributor.author Çagan, Yagiz Can
dc.contributor.author Özmen, Atilla
dc.contributor.author Yıldırım, Batuhan
dc.contributor.author Tander, Baran
dc.contributor.author Demirel, Mücahit
dc.contributor.author Özmen, Atilla
dc.contributor.author Tander, Baran
dc.contributor.author Çevik, Mesut
dc.contributor.other Computer Engineering
dc.contributor.other Electrical-Electronics Engineering
dc.date.accessioned 2021-01-28T09:34:43Z
dc.date.available 2021-01-28T09:34:43Z
dc.date.issued 2020
dc.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
dc.description.abstract In this study, a device named smart stethoscope that uses digital sensor technology for sound capture, active acoustics for noise cancellation and artificial intelligence (AI) for diagnosis of heart and lung diseases is developed to help the health workers to make accurate diagnoses. Furthermore, the respiratory diseases are classified by using Deep Learning and Long Short-Term Memory (LSTM) techniques whereas the probability of these diseases are obtained. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/TIPTEKNO50054.2020.9299229 en_US
dc.identifier.isbn 978-172818073-1
dc.identifier.scopus 2-s2.0-85099450861 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/3757
dc.identifier.uri https://doi.org/10.1109/TIPTEKNO50054.2020.9299229
dc.identifier.wos WOS:000659419900017 en_US
dc.institutionauthor Çevik, Mesut en_US
dc.institutionauthor Tander, Baran en_US
dc.institutionauthor Özmen, Atilla en_US
dc.institutionauthor Demirel, Mücahit en_US
dc.institutionauthor Yıldırım, Batuhan en_US
dc.institutionauthor Çagan, Yagiz Can en_US
dc.institutionauthor Türker, Mehmet Nasuhcan en_US
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.journal 2020 Medical Technologies Congress en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/embargoedAccess en_US
dc.scopus.citedbyCount 3
dc.subject Amplifiers en_US
dc.subject Deep learning en_US
dc.subject Diagnosis en_US
dc.subject Filters en_US
dc.subject Heart and lung sounds en_US
dc.subject Long short-term memory en_US
dc.subject Stethoscope en_US
dc.title Smart Stethoscope en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication ec2e889c-a1fd-4450-b390-0d40964c10e2
relation.isAuthorOfPublication cf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isAuthorOfPublication 75e36d40-1e6e-401f-b656-5894d3bd22e9
relation.isAuthorOfPublication.latestForDiscovery ec2e889c-a1fd-4450-b390-0d40964c10e2
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Television Studies_4_2.pdf
Size:
74.11 KB
Format:
Adobe Portable Document Format
Description: