Unveiling the Significance of Individual Level Predictions: a Comparative Analysis of Gru and Lstm Models for Enhanced Digital Behavior Prediction

dc.authorid Kiyakoglu, Burhan Yasin/0000-0001-9254-3181
dc.authorid Aydin, Mehmet/0000-0002-3995-6566
dc.authorscopusid 57211442830
dc.authorscopusid 8873732700
dc.contributor.author Aydın, Mehmet Nafiz
dc.contributor.author Aydin, Mehmet N.
dc.contributor.other Management Information Systems
dc.date.accessioned 2024-11-15T17:48:55Z
dc.date.available 2024-11-15T17:48:55Z
dc.date.issued 2024
dc.department Kadir Has University en_US
dc.department-temp [Kiyakoglu, Burhan Y.; Aydin, Mehmet N.] Kadir Has Univ, Dept Management Informat Syst, TR-34083 Istanbul, Turkiye en_US
dc.description Kiyakoglu, Burhan Yasin/0000-0001-9254-3181; Aydin, Mehmet/0000-0002-3995-6566 en_US
dc.description.abstract The widespread use of technology has led to a transformation of human behaviors and habits into the digital space; and generating extensive data plays a crucial role when coupled with forecasting techniques in guiding marketing decision-makers and shaping strategic choices. Traditional methods like autoregressive moving average (ARMA) can-not be used at predicting individual behaviors because we can-not create models for each individual and buy till you die (BTYD) models have limitations in capturing the trends accurately. Recognizing the paramount importance of individual-level predictions, this study proposes a deep learning framework, specifically uses gated recurrent unit (GRU), for enhanced behavior analysis. This article discusses the performance of GRU and long short-term memory (LSTM) models in this framework for forecasting future individual behaviors and presenting a comparative analysis against benchmark BTYD models. GRU and LSTM yielded the best results in capturing the trends, with GRU demonstrating a slightly superior performance compared to LSTM. However, there is still significant room for improvement at the individual level. The findings not only demonstrate the performance of GRU and LSTM models but also provide valuable insights into the potential of new techniques or approaches for understanding and predicting individual behaviors. en_US
dc.description.sponsorship Burhan Y. Kiyakoglu en_US
dc.description.sponsorship The APC was funded by Burhan Y. Kiyakoglu. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.3390/app14198858
dc.identifier.issn 2076-3417
dc.identifier.issue 19 en_US
dc.identifier.scopus 2-s2.0-85206590233
dc.identifier.scopusquality Q3
dc.identifier.uri https://doi.org/10.3390/app14198858
dc.identifier.uri https://hdl.handle.net/20.500.12469/6705
dc.identifier.volume 14 en_US
dc.identifier.wos WOS:001332194500001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 0
dc.subject behavioral analytics en_US
dc.subject individual-level prediction en_US
dc.subject BTYD en_US
dc.subject LSTM en_US
dc.subject GRU en_US
dc.subject forecasting en_US
dc.title Unveiling the Significance of Individual Level Predictions: a Comparative Analysis of Gru and Lstm Models for Enhanced Digital Behavior Prediction en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication a66a9279-fa0c-4915-816f-40c93cee4747
relation.isAuthorOfPublication.latestForDiscovery a66a9279-fa0c-4915-816f-40c93cee4747
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files