Unveiling the Significance of Individual Level Predictions: a Comparative Analysis of Gru and Lstm Models for Enhanced Digital Behavior Prediction

dc.contributor.author Kiyakoglu, Burhan Y.
dc.contributor.author Aydin, Mehmet N.
dc.date.accessioned 2024-11-15T17:48:55Z
dc.date.available 2024-11-15T17:48:55Z
dc.date.issued 2024
dc.description Kiyakoglu, Burhan Yasin/0000-0001-9254-3181; Aydin, Mehmet/0000-0002-3995-6566 en_US
dc.description.abstract The widespread use of technology has led to a transformation of human behaviors and habits into the digital space; and generating extensive data plays a crucial role when coupled with forecasting techniques in guiding marketing decision-makers and shaping strategic choices. Traditional methods like autoregressive moving average (ARMA) can-not be used at predicting individual behaviors because we can-not create models for each individual and buy till you die (BTYD) models have limitations in capturing the trends accurately. Recognizing the paramount importance of individual-level predictions, this study proposes a deep learning framework, specifically uses gated recurrent unit (GRU), for enhanced behavior analysis. This article discusses the performance of GRU and long short-term memory (LSTM) models in this framework for forecasting future individual behaviors and presenting a comparative analysis against benchmark BTYD models. GRU and LSTM yielded the best results in capturing the trends, with GRU demonstrating a slightly superior performance compared to LSTM. However, there is still significant room for improvement at the individual level. The findings not only demonstrate the performance of GRU and LSTM models but also provide valuable insights into the potential of new techniques or approaches for understanding and predicting individual behaviors. en_US
dc.description.sponsorship Burhan Y. Kiyakoglu en_US
dc.description.sponsorship The APC was funded by Burhan Y. Kiyakoglu. en_US
dc.identifier.doi 10.3390/app14198858
dc.identifier.issn 2076-3417
dc.identifier.scopus 2-s2.0-85206590233
dc.identifier.uri https://doi.org/10.3390/app14198858
dc.identifier.uri https://hdl.handle.net/20.500.12469/6705
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.ispartof Applied Sciences
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject behavioral analytics en_US
dc.subject individual-level prediction en_US
dc.subject BTYD en_US
dc.subject LSTM en_US
dc.subject GRU en_US
dc.subject forecasting en_US
dc.title Unveiling the Significance of Individual Level Predictions: a Comparative Analysis of Gru and Lstm Models for Enhanced Digital Behavior Prediction en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Kiyakoglu, Burhan Yasin/0000-0001-9254-3181
gdc.author.id Aydin, Mehmet/0000-0002-3995-6566
gdc.author.institutional Aydın, Mehmet Nafiz
gdc.author.scopusid 57211442830
gdc.author.scopusid 8873732700
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Kiyakoglu, Burhan Y.; Aydin, Mehmet N.] Kadir Has Univ, Dept Management Informat Syst, TR-34083 Istanbul, Turkiye en_US
gdc.description.issue 19 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 8858
gdc.description.volume 14 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4403074494
gdc.identifier.wos WOS:001332194500001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Technology
gdc.oaire.keywords QH301-705.5
gdc.oaire.keywords GRU
gdc.oaire.keywords T
gdc.oaire.keywords Physics
gdc.oaire.keywords QC1-999
gdc.oaire.keywords forecasting
gdc.oaire.keywords Engineering (General). Civil engineering (General)
gdc.oaire.keywords Chemistry
gdc.oaire.keywords BTYD
gdc.oaire.keywords behavioral analytics
gdc.oaire.keywords individual-level prediction
gdc.oaire.keywords TA1-2040
gdc.oaire.keywords Biology (General)
gdc.oaire.keywords LSTM
gdc.oaire.keywords QD1-999
gdc.oaire.popularity 2.9478422E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.0
gdc.opencitations.count 0
gdc.plumx.mendeley 8
gdc.plumx.newscount 1
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.wos.citedcount 0
relation.isAuthorOfPublication a66a9279-fa0c-4915-816f-40c93cee4747
relation.isAuthorOfPublication.latestForDiscovery a66a9279-fa0c-4915-816f-40c93cee4747
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files