Transfer Learning for Phishing Detection: Screenshot-Based Website Classification
No Thumbnail Available
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Electrical and Electronics Engineers Inc.
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Phishing remains a significant threat in the evolving cybersecurity landscape as phishing websites become increasingly similar to legitimate websites, complicating detection using traditional methods. This study explores AI-based solutions for screenshot-based phishing detection, utilizing the MTLP dataset and applying transfer learning with pretrained models (DenseNet, ResNet, EfficientNet, Inception, MobileNet, VGG) using the timm library. The study also discusses challenges related to phishing datasets and compares publicly available datasets, highlighting MTLP Dataset's strengths. DenseNetBlur121D was identified as the top-performing model, achieving an accuracy of 95.28%, a recall of 95.38%, a precision of 93.42%, and an F1 score of 94.39% when applied to the entire MTLP dataset. Both the model code and dataset are publicly available, providing a valuable resource for further research and development in this domain. © 2024 IEEE.
Description
Keywords
Cybersecurity, Dataset Comparison, Open Dataset, Phishing Detection, Pretrained, Transfer Learning
Turkish CoHE Thesis Center URL
Fields of Science
Citation
0
WoS Q
N/A
Scopus Q
N/A
Source
UBMK 2024 - Proceedings: 9th International Conference on Computer Science and Engineering -- 9th International Conference on Computer Science and Engineering, UBMK 2024 -- 26 October 2024 through 28 October 2024 -- Antalya -- 204906
Volume
Issue
Start Page
784
End Page
789