Transfer Learning for Phishing Detection: Screenshot-Based Website Classification

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers Inc.

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

Phishing remains a significant threat in the evolving cybersecurity landscape as phishing websites become increasingly similar to legitimate websites, complicating detection using traditional methods. This study explores AI-based solutions for screenshot-based phishing detection, utilizing the MTLP dataset and applying transfer learning with pretrained models (DenseNet, ResNet, EfficientNet, Inception, MobileNet, VGG) using the timm library. The study also discusses challenges related to phishing datasets and compares publicly available datasets, highlighting MTLP Dataset's strengths. DenseNetBlur121D was identified as the top-performing model, achieving an accuracy of 95.28%, a recall of 95.38%, a precision of 93.42%, and an F1 score of 94.39% when applied to the entire MTLP dataset. Both the model code and dataset are publicly available, providing a valuable resource for further research and development in this domain. © 2024 IEEE.

Description

Keywords

Cybersecurity, Dataset Comparison, Open Dataset, Phishing Detection, Pretrained, Transfer Learning

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

N/A

Scopus Q

N/A

Source

UBMK 2024 - Proceedings: 9th International Conference on Computer Science and Engineering -- 9th International Conference on Computer Science and Engineering, UBMK 2024 -- 26 October 2024 through 28 October 2024 -- Antalya -- 204906

Volume

Issue

Start Page

784

End Page

789