Transfer Learning for Phishing Detection: Screenshot-Based Website Classification

dc.authorscopusid58705861300
dc.authorscopusid57964038500
dc.authorscopusid6507328166
dc.contributor.authorÇolhak, F.
dc.contributor.authorEcevit, M.I.
dc.contributor.authorDaǧ, H.
dc.date.accessioned2025-02-15T19:38:32Z
dc.date.available2025-02-15T19:38:32Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-tempÇolhak F., CCIP, Center for Cyber Security and Critical Infrastructure Protection, Kadir Has University, Istanbul, Turkey; Ecevit M.I., CCIP, Center for Cyber Security and Critical Infrastructure Protection, Kadir Has University, Istanbul, Turkey; Daǧ H., CCIP, Center for Cyber Security and Critical Infrastructure Protection, Kadir Has University, Istanbul, Turkeyen_US
dc.description.abstractPhishing remains a significant threat in the evolving cybersecurity landscape as phishing websites become increasingly similar to legitimate websites, complicating detection using traditional methods. This study explores AI-based solutions for screenshot-based phishing detection, utilizing the MTLP dataset and applying transfer learning with pretrained models (DenseNet, ResNet, EfficientNet, Inception, MobileNet, VGG) using the timm library. The study also discusses challenges related to phishing datasets and compares publicly available datasets, highlighting MTLP Dataset's strengths. DenseNetBlur121D was identified as the top-performing model, achieving an accuracy of 95.28%, a recall of 95.38%, a precision of 93.42%, and an F1 score of 94.39% when applied to the entire MTLP dataset. Both the model code and dataset are publicly available, providing a valuable resource for further research and development in this domain. © 2024 IEEE.en_US
dc.identifier.citation0
dc.identifier.doi10.1109/UBMK63289.2024.10773490
dc.identifier.endpage789en_US
dc.identifier.isbn9798350365887
dc.identifier.scopus2-s2.0-85215517377
dc.identifier.scopusqualityN/A
dc.identifier.startpage784en_US
dc.identifier.urihttps://doi.org/10.1109/UBMK63289.2024.10773490
dc.identifier.urihttps://hdl.handle.net/20.500.12469/7194
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofUBMK 2024 - Proceedings: 9th International Conference on Computer Science and Engineering -- 9th International Conference on Computer Science and Engineering, UBMK 2024 -- 26 October 2024 through 28 October 2024 -- Antalya -- 204906en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCybersecurityen_US
dc.subjectDataset Comparisonen_US
dc.subjectOpen Dataseten_US
dc.subjectPhishing Detectionen_US
dc.subjectPretraineden_US
dc.subjectTransfer Learningen_US
dc.titleTransfer Learning for Phishing Detection: Screenshot-Based Website Classificationen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files