Age Classification by Wgan Brain Mr Image Augmentation

dc.authorscopusid59482048800
dc.authorscopusid59481530500
dc.authorscopusid57206483065
dc.authorscopusid55364715200
dc.contributor.authorYaman, B.
dc.contributor.authorYilmaz, O.Z.
dc.contributor.authorDarici, M.B.
dc.contributor.authorOzmen, A.
dc.date.accessioned2025-01-15T21:38:19Z
dc.date.available2025-01-15T21:38:19Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-tempYaman B., Dept. of Electrical-Electronics Eng., Kadir Has University, Istanbul, Turkey; Yilmaz O.Z., Dept. of Electrical-Electronics Eng., Kadir Has University, Istanbul, Turkey; Darici M.B., Dept. of Electrical-Electronics Eng., Kadir Has University, Istanbul, Turkey; Ozmen A., Dept. of Electrical-Electronics Eng., Istanbul Kultur University, Istanbul, Turkeyen_US
dc.description.abstractMedical image augmentation plays a crucial role in enhancing the performance of Artificial Intelligence (AI) applications in medical sciences. Augmenting medical images is important for solving data scarcity, increasing data diversity, enhancing robustness and reliability of model and improving training and test results that can be done in medical sciences. In this work we show that Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) can be used for increasing the performance of data classification. To achieve that, we have augmented healthy brain MR images by using WGAN and updated the dataset. The results give that when dataset augmented by WGAN-GP is used as input for CNN-based model to solve age classification problem, accuracy of this model increases to 98,37% from 95,14%. It can be concluded that the purposed WGAN-based brain MR image augmentation method enhances the performance of image classification. © 2024 IEEE.en_US
dc.identifier.citation0
dc.identifier.doi10.1109/TIPTEKNO63488.2024.10755233
dc.identifier.isbn979-833152981-9
dc.identifier.scopus2-s2.0-85212692469
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO63488.2024.10755233
dc.identifier.urihttps://hdl.handle.net/20.500.12469/7133
dc.identifier.wosqualityN/A
dc.institutionauthorÖzmen, Atilla
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTIPTEKNO 2024 - Medical Technologies Congress, Proceedings -- 2024 Medical Technologies Congress, TIPTEKNO 2024 -- 10 October 2024 through 12 October 2024 -- Mugla -- 204315en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAge Classificationen_US
dc.subjectBrain Mren_US
dc.subjectData Augmentationen_US
dc.subjectWganen_US
dc.titleAge Classification by Wgan Brain Mr Image Augmentationen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationcf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isAuthorOfPublication.latestForDiscoverycf8f9e05-3f89-4ab6-af78-d0937210fb77

Files