Age Classification by WGAN Brain MR Image Augmentation
| dc.contributor.author | Yaman, Batuhan | |
| dc.contributor.author | Yilmaz, Ozge Zeynep | |
| dc.contributor.author | Darici, Muazzez Buket | |
| dc.contributor.author | Ozmen, Atilla | |
| dc.date.accessioned | 2025-01-15T21:38:19Z | |
| dc.date.available | 2025-01-15T21:38:19Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | Medical image augmentation plays a crucial role in enhancing the performance of Artificial Intelligence (AI) applications in medical sciences. Augmenting medical images is important for solving data scarcity, increasing data diversity, enhancing robustness and reliability of model and improving training and test results that can be done in medical sciences. In this work we show that Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) can be used for increasing the performance of data classification. To achieve that, we have augmented healthy brain MR images by using WGAN and updated the dataset. The results give that when dataset augmented by WGAN-GP is used as input for CNN-based model to solve age classification problem, accuracy of this model increases to 98,37% from 95,14%. It can be concluded that the purposed WGAN-based brain MR image augmentation method enhances the performance of image classification. | en_US |
| dc.identifier.doi | 10.1109/TIPTEKNO63488.2024.10755233 | |
| dc.identifier.isbn | 9798331529819 | |
| dc.identifier.isbn | 9798331529826 | |
| dc.identifier.issn | 2687-7775 | |
| dc.identifier.scopus | 2-s2.0-85212692469 | |
| dc.identifier.uri | https://doi.org/10.1109/TIPTEKNO63488.2024.10755233 | |
| dc.language.iso | en | en_US |
| dc.publisher | IEEE | en_US |
| dc.relation.ispartof | 2024 Medical Technologies Congress -- OCT 10-12, 2024 -- Bodrum, TURKIYE | en_US |
| dc.relation.ispartofseries | Medical Technologies National Conference | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | WGAN | en_US |
| dc.subject | Data Augmentation | en_US |
| dc.subject | Brain MR | en_US |
| dc.subject | Age Classification | en_US |
| dc.title | Age Classification by WGAN Brain MR Image Augmentation | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Özmen, Atilla | |
| gdc.author.institutional | Darıcı, Muazzez Buket | |
| gdc.author.scopusid | 59482048800 | |
| gdc.author.scopusid | 59481530500 | |
| gdc.author.scopusid | 57206483065 | |
| gdc.author.scopusid | 55364715200 | |
| gdc.author.wosid | Ozmen, Atilla/Lzg-4973-2025 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.description.department | Kadir Has University | en_US |
| gdc.description.departmenttemp | [Yaman, Batuhan; Yilmaz, Ozge Zeynep; Darici, Muazzez Buket] Kadir Has Univ, Dept Elect Elect Engn, Istanbul, Turkiye; [Ozmen, Atilla] Istanbul Kultur Univ, Dept Elect Elect Engn, Istanbul, Turkiye | en_US |
| gdc.description.endpage | 4 | |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 1 | |
| gdc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W4404564873 | |
| gdc.identifier.wos | WOS:001454367500003 | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.5942106E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 2.9478422E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.0 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 1 | |
| gdc.scopus.citedcount | 1 | |
| gdc.wos.citedcount | 1 | |
| relation.isAuthorOfPublication | cf8f9e05-3f89-4ab6-af78-d0937210fb77 | |
| relation.isAuthorOfPublication | b5442f04-afe8-48f2-86ef-b8c23df8b01e | |
| relation.isAuthorOfPublication.latestForDiscovery | cf8f9e05-3f89-4ab6-af78-d0937210fb77 | |
| relation.isOrgUnitOfPublication | 12b0068e-33e6-48db-b92a-a213070c3a8d | |
| relation.isOrgUnitOfPublication | 2457b9b3-3a3f-4c17-8674-7f874f030d96 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 12b0068e-33e6-48db-b92a-a213070c3a8d |