Age Classification by WGAN Brain MR Image Augmentation

dc.contributor.author Yaman, Batuhan
dc.contributor.author Yilmaz, Ozge Zeynep
dc.contributor.author Darici, Muazzez Buket
dc.contributor.author Ozmen, Atilla
dc.date.accessioned 2025-01-15T21:38:19Z
dc.date.available 2025-01-15T21:38:19Z
dc.date.issued 2024
dc.description.abstract Medical image augmentation plays a crucial role in enhancing the performance of Artificial Intelligence (AI) applications in medical sciences. Augmenting medical images is important for solving data scarcity, increasing data diversity, enhancing robustness and reliability of model and improving training and test results that can be done in medical sciences. In this work we show that Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) can be used for increasing the performance of data classification. To achieve that, we have augmented healthy brain MR images by using WGAN and updated the dataset. The results give that when dataset augmented by WGAN-GP is used as input for CNN-based model to solve age classification problem, accuracy of this model increases to 98,37% from 95,14%. It can be concluded that the purposed WGAN-based brain MR image augmentation method enhances the performance of image classification. en_US
dc.identifier.doi 10.1109/TIPTEKNO63488.2024.10755233
dc.identifier.isbn 9798331529819
dc.identifier.isbn 9798331529826
dc.identifier.issn 2687-7775
dc.identifier.scopus 2-s2.0-85212692469
dc.identifier.uri https://doi.org/10.1109/TIPTEKNO63488.2024.10755233
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.ispartof 2024 Medical Technologies Congress -- OCT 10-12, 2024 -- Bodrum, TURKIYE en_US
dc.relation.ispartofseries Medical Technologies National Conference
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject WGAN en_US
dc.subject Data Augmentation en_US
dc.subject Brain MR en_US
dc.subject Age Classification en_US
dc.title Age Classification by WGAN Brain MR Image Augmentation en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Özmen, Atilla
gdc.author.institutional Darıcı, Muazzez Buket
gdc.author.scopusid 59482048800
gdc.author.scopusid 59481530500
gdc.author.scopusid 57206483065
gdc.author.scopusid 55364715200
gdc.author.wosid Ozmen, Atilla/Lzg-4973-2025
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Yaman, Batuhan; Yilmaz, Ozge Zeynep; Darici, Muazzez Buket] Kadir Has Univ, Dept Elect Elect Engn, Istanbul, Turkiye; [Ozmen, Atilla] Istanbul Kultur Univ, Dept Elect Elect Engn, Istanbul, Turkiye en_US
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W4404564873
gdc.identifier.wos WOS:001454367500003
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.9478422E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.0
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.wos.citedcount 1
relation.isAuthorOfPublication cf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isAuthorOfPublication b5442f04-afe8-48f2-86ef-b8c23df8b01e
relation.isAuthorOfPublication.latestForDiscovery cf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files