Adaptive Segmentation of IIoT Time Series Data via Change Point Detection for Machinery Fault Classification

dc.contributor.author Balli, Tugce
dc.contributor.author Kacar, Saygin
dc.contributor.author Yetkin, E. Fatih
dc.date.accessioned 2026-02-15T21:34:29Z
dc.date.available 2026-02-15T21:34:29Z
dc.date.issued 2026
dc.description.abstract Predictive maintenance (PdM) is a critical concept in Industry 4.0 that aims to improve manufacturing processes by predicting the remaining useful time of machinery. The development of PdM models relies on access to sufficient data, including condition monitoring and maintenance data from industrial applications. One of the critical aspects of modern PdM approaches is the classification of potential fault signals using time series data collected from IoT devices. However, in most cases, the non-stationary nature of these time series data often causes difficulties with the validity of traditional segmentation techniques when applied to such dynamically changing data patterns. In this work, we propose an adaptive segmentation approach through change point detection to address the inherent non-stationarity of time series, thereby improving the classification performance of traditional classifiers for fault detection problems. By using an adaptive segmentation scheme, we aim to extract more relevant features that will lead to improved classification performance. Taking the time-sensitive nature of the problem into account, we employed three well-known change point detection algorithms (Pruned Exact Linear Time -PELT- algorithm, Binary Segmentation, and Bottom-up segmentation). The effectiveness of the proposed methods is demonstrated by experiments using two different datasets widely used in the PdM literature. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkiye (TUBITAK) [221N220] en_US
dc.description.sponsorship This work was supported by the Scientific and Technological Research Council of Turkiye (TUBITAK) under Grant 221N220. en_US
dc.identifier.doi 10.1109/ACCESS.2026.3654958
dc.identifier.issn 2169-3536
dc.identifier.scopus 2-s2.0-105028212505
dc.identifier.uri https://doi.org/10.1109/ACCESS.2026.3654958
dc.identifier.uri https://hdl.handle.net/20.500.12469/7736
dc.language.iso en en_US
dc.publisher IEEE-Inst Electrical Electronics Engineers Inc en_US
dc.relation.ispartof IEEE Access en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Time Series Analysis en_US
dc.subject Feature Extraction en_US
dc.subject Fault Diagnosis en_US
dc.subject Machine Learning en_US
dc.subject Accuracy en_US
dc.subject Industrial Internet of Things en_US
dc.subject Predictive Maintenance en_US
dc.subject Fault Detection en_US
dc.subject Standards en_US
dc.subject Production en_US
dc.subject Change Point Detection en_US
dc.subject Time Series Classification en_US
dc.subject Pelt en_US
dc.subject Predictive Maintenance en_US
dc.title Adaptive Segmentation of IIoT Time Series Data via Change Point Detection for Machinery Fault Classification en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 24823826600
gdc.author.scopusid 59520568200
gdc.author.scopusid 60365209900
gdc.author.wosid Yetkin, Emrullah/Aag-1827-2019
gdc.collaboration.industrial false
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Balli, Tugce; Kacar, Saygin; Yetkin, E. Fatih] Kadir Has Univ, Dept Management Informat Syst, TR-34083 Istanbul, Turkiye en_US
gdc.description.endpage 10551 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 10540 en_US
gdc.description.volume 14 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W7125006354
gdc.identifier.wos WOS:001669231000022
gdc.index.type WoS
gdc.index.type Scopus
gdc.openalex.collaboration National
gdc.openalex.normalizedpercentile 0.53
gdc.opencitations.count 0
gdc.plumx.newscount 1
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Ballı, Tuğçe
gdc.virtual.author Yetkin, Emrullah Fatih
gdc.wos.citedcount 0
relation.isAuthorOfPublication 97c3a2d8-b41c-40fe-9319-e0f9fc8516eb
relation.isAuthorOfPublication 81114204-31da-4513-a19f-b5446f8a3a08
relation.isAuthorOfPublication.latestForDiscovery 97c3a2d8-b41c-40fe-9319-e0f9fc8516eb
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files