Exploring the Benefits of Data Augmentation in Math Word Problem Solving
dc.authorscopusid | 57215312808 | |
dc.authorscopusid | 55664402200 | |
dc.contributor.author | Yiğit, Gülsüm | |
dc.contributor.author | Amasyali,M.F. | |
dc.date.accessioned | 2024-06-23T21:39:21Z | |
dc.date.available | 2024-06-23T21:39:21Z | |
dc.date.issued | 2023 | |
dc.department | Kadir Has University | en_US |
dc.department-temp | Yigit G., Kadir Has University, Department of Computer Engineering, Istanbul, Turkey; Amasyali M.F., Yildiz Technical University, Department of Computer Engineering, Istanbul, Turkey | en_US |
dc.description | OpenCEMS - Connected Environment and Distributed Energy Data Management Solutions | en_US |
dc.description.abstract | Math Word Problem (MWP) is a challenging Natural Language Processing (NLP) task. Existing MWP solvers have shown that current models need to generalize better and obtain higher performances. In this study, we aim to enrich existing MWP datasets with high-quality data, which may improve MWP solvers' performances. We propose several data augmentation methods by applying minor modifications to the problem texts and equations of English MWPs datasets which contain equations with one unknown. Extensive experiments on two MWPs datasets have shown that data created by augmented methods have considerably improved performance. Moreover, further increasing the training samples by combining the samples generated by the proposed augmentation methods provides further performance improvements. © 2023 IEEE. | en_US |
dc.description.sponsorship | Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK, (120E100) | en_US |
dc.identifier.citation | 1 | |
dc.identifier.doi | 10.1109/INISTA59065.2023.10310417 | |
dc.identifier.isbn | 979-835033890-4 | |
dc.identifier.scopus | 2-s2.0-85179550570 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.uri | https://doi.org/10.1109/INISTA59065.2023.10310417 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/5864 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 17th International Conference on INnovations in Intelligent SysTems and Applications, INISTA 2023 - Proceedings -- 17th International Conference on INnovations in Intelligent SysTems and Applications, INISTA 2023 -- 20 September 2023 through 23 September 2023 -- Hammamet -- 194596 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Data Augmentation | en_US |
dc.subject | Math Word Problems | en_US |
dc.subject | Question Answering | en_US |
dc.title | Exploring the Benefits of Data Augmentation in Math Word Problem Solving | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 363c092e-cd4b-400e-8261-ca5b99b1bea9 | |
relation.isAuthorOfPublication.latestForDiscovery | 363c092e-cd4b-400e-8261-ca5b99b1bea9 |