The Effect of Primary User Bandwidth on Bayesian Compressive Sensing Based Spectrum Sensing
Loading...
Date
2016
Authors
Başaran, Mehmet
Erküçük, Serhat
Cirpan, Hakan Ali
Journal Title
Journal ISSN
Volume Title
Publisher
IEEE Computer Society
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
The application of compressive sensing (CS) theory has found great interest in wideband spectrum sensing. Although most studies have considered perfect reconstruction of the primary user signal it is actually more important to assess the presence or absence of the signal. Among CS based methods Bayesian CS (BCS) takes into consideration the prior information of signal coefficients to be estimated which improves signal reconstruction performance. On the other hand the sparsity level of the signal to be estimated has a direct impact on signal reconstruction and detection performances. Considering all of the above the effect of sparsity level on BCS based spectrum sensing is studied in this paper. More specifically a BCS based spectrum sensing scheme is considered and its mean-square error (MSE) performance is compared with the Bayesian Cramer-Rao bound for various user bandwidths. BCS MSE is also compared with the deterministic lower MSE (DL-MSE) which is a tight lower bound of the conventional basis pursuit approach. Furthermore complementary receiver operating characteristic (ROC) curves are obtained to examine the trade-off between probabilities of false alarm and detection depending on the user signal bandwidth.
Description
Keywords
Bayesian Compressive Sensing, Cognitive Radios, Energy Efficiency, Probability of Detection, Probability of False Alarm, Spectrum Sensing
Turkish CoHE Thesis Center URL
Fields of Science
Citation
1
WoS Q
N/A
Scopus Q
N/A
Source
Volume
2016-January
Issue
Start Page
35
End Page
39