The Use of Statistical Features for Low-Rate Denial-Of Attack Detection

dc.contributor.author Fuladi, Ramin
dc.contributor.author Baykas, Tuncer
dc.contributor.author Anarim, Emin
dc.date.accessioned 2024-06-23T21:37:38Z
dc.date.available 2024-06-23T21:37:38Z
dc.date.issued 2024
dc.description.abstract Low-rate denial-of-service (LDoS) attacks can significantly reduce network performance. These attacks involve sending periodic high-intensity pulse data flows, sharing similar harmful effects with traditional DoS attacks. However, LDoS attacks have different attack modes, making detection particularly challenging. The high level of concealment associated with LDoS attacks makes them extremely difficult to identify using traditional DoS detection methods. In this paper, we explore the potential of using statistical features for LDoS attack detection. Our results demonstrate the promising performance of statistical features in detecting these attacks. Furthermore, through ANOVA, mutual information, RFE, and SHAP analysis, we find that entropy and L-moment-based features play a crucial role in LDoS attack detection. These findings provide valuable insights into utilizing statistical features enhancing network security, thereby improving the overall resilience and stability of networks against various types of attacks. en_US
dc.description.sponsorship Trkiye Bilimsel ve Teknolojik Arascedil;timath;rma Kurumu en_US
dc.description.sponsorship No Statement Available en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/s12243-024-01027-3
dc.identifier.issn 0003-4347
dc.identifier.issn 1958-9395
dc.identifier.scopus 2-s2.0-85189434767
dc.identifier.uri https://doi.org/10.1007/s12243-024-01027-3
dc.identifier.uri https://hdl.handle.net/20.500.12469/5734
dc.language.iso en en_US
dc.publisher Springer int Publ Ag en_US
dc.relation.ispartof Annals of Telecommunications
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Low-rate DDoS attack en_US
dc.subject Feature engineering en_US
dc.subject Machine learning en_US
dc.subject Explainable AI en_US
dc.title The Use of Statistical Features for Low-Rate Denial-Of Attack Detection en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Baykaş, Tunçer
gdc.author.scopusid 55807299700
gdc.author.scopusid 24328990900
gdc.author.scopusid 6603885574
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Fuladi, Ramin] Ericsson Res, Istanbul, Turkiye; [Baykas, Tuncer] Kadir Has Univ, Istanbul, Turkiye; [Anarim, Emin] Bogazici Univ, Istanbul, Turkiye en_US
gdc.description.endpage 691
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 679
gdc.description.volume 79
gdc.identifier.openalex W4393987873
gdc.identifier.wos WOS:001197350500002
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 3.0672183E-9
gdc.oaire.isgreen true
gdc.oaire.popularity 4.4348503E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 3.353
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 0
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.wos.citedcount 5
relation.isAuthorOfPublication ab26f923-9923-42a2-b21e-2dd862cd92be
relation.isAuthorOfPublication.latestForDiscovery ab26f923-9923-42a2-b21e-2dd862cd92be
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files