Bivariate Pseudo-Gompertz Distribution and Concomitants of Its Order Statistics

gdc.relation.journal Journal Of Computational And Applied Mathematics en_US
dc.contributor.author Yorubulut, Serap
dc.contributor.author Gebizlioğlu, Ömer Lütfi
dc.contributor.other International Trade and Finance
dc.contributor.other 03. Faculty of Economics, Administrative and Social Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2019-06-27T08:03:30Z
dc.date.available 2019-06-27T08:03:30Z
dc.date.issued 2013
dc.description.abstract This paper presents a new bivariate Pseudo-Gompertz distribution that sprouts from the classical Gompertz distribution and possesses the features of pseudo-distribution functions. In addition to some standard properties of the proposed distribution distributions of order statistics and their concomitants for samples drawn from the new distribution are obtained. The survival and hazard functions of the concomitants are shown and their values are tabled. Interpretations of the results are given in connection with risk events and risk management. (C) 2013 Elsevier B.V. All rights reserved. en_US]
dc.identifier.citationcount 11
dc.identifier.doi 10.1016/j.cam.2013.01.006 en_US
dc.identifier.issn 0377-0427 en_US
dc.identifier.issn 0377-0427
dc.identifier.scopus 2-s2.0-84873352499 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/798
dc.identifier.uri https://doi.org/10.1016/j.cam.2013.01.006
dc.language.iso en en_US
dc.publisher Elsevier Science Bv en_US
dc.relation.ispartof Journal of Computational and Applied Mathematics
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Bivariate Gompertz distribution en_US
dc.subject Pseudo-distribution en_US
dc.subject Order statistics en_US
dc.subject Concomitants en_US
dc.subject Survival function en_US
dc.subject Insurance and reliability en_US
dc.title Bivariate Pseudo-Gompertz Distribution and Concomitants of Its Order Statistics en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Gebizlioğlu, Ömer Lütfi en_US
gdc.author.institutional Gebizlioğlu, Ömer Lütfi
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, İşletme Fakültesi, Uluslararası Ticaret ve Finans Bölümü en_US
gdc.description.endpage 83
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 68 en_US
gdc.description.volume 247 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W1977895326
gdc.identifier.wos WOS:000316588300005 en_US
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.downloads 2
gdc.oaire.impulse 5.0
gdc.oaire.influence 3.4413317E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Insurance and reliability
gdc.oaire.keywords Concomitants
gdc.oaire.keywords Bivariate Gompertz distribution
gdc.oaire.keywords Pseudo-distribution
gdc.oaire.keywords Survival function
gdc.oaire.keywords Order statistics
gdc.oaire.popularity 2.866433E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.views 7
gdc.openalex.fwci 1.125
gdc.openalex.normalizedpercentile 0.74
gdc.opencitations.count 9
gdc.plumx.crossrefcites 9
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 11
gdc.scopus.citedcount 11
gdc.wos.citedcount 11
relation.isAuthorOfPublication 5a5c8816-1812-437a-81bb-7e07bf97810e
relation.isAuthorOfPublication.latestForDiscovery 5a5c8816-1812-437a-81bb-7e07bf97810e
relation.isOrgUnitOfPublication 16202dfd-a149-4884-98fb-ada5f8c12918
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 16202dfd-a149-4884-98fb-ada5f8c12918

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bivariate Pseudo-Gompertz distribution and concomitants of its order statistics.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
Description: