Sparse Code Multiple Access-Based Edge Computing for Iot Systems

No Thumbnail Available

Date

2019

Authors

Alnoman, Ali
Erküçük, Serhat
Anpalagan, Alagan

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE-Inst Electrical Electronics Engineers Inc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

In this paper, a sparse code multiple access (SCMA)-based edge computing scheme is proposed for Internet-of- Things (IoT) systems. The aim of implementing SCMA, which is a nonorthogonal multiple access resource allocation technique, is to improve network connectivity and maximize data rate provision. The proposed edge-IoT system is investigated under different SCMA configurations to explore the various performance aspects such as connectivity, throughput, task completion time, and complexity. First, the problem is formulated as a data rate maximization problem for SCMA-based heterogeneous networks under power constraints. Then, the problem is subdivided into a power allocation problem, which is solved using the water filling approach, and a codebook allocation problem that is solved using a heuristic algorithm. The results show that the SCMA scheme can significantly improve the IoT performance compared to the conventional orthogonal frequencydivision multiple access resource allocation scheme in terms of connectivity, throughput, and task completion time provided that SCMA configurations are suitable with IoT processing capabilities to avoid undesired detection latency.

Description

Keywords

Edge computing, Heterogeneous networks (HetNets), Internet-of-Things (IoT), Nonorthogonal multiple access (NOMA), Orthogonal frequency-division multiple access (OFDMA), Sparse code multiple access (SCMA)

Turkish CoHE Thesis Center URL

Fields of Science

Citation

18

WoS Q

Q1

Scopus Q

Q1

Source

Volume

6

Issue

4

Start Page

7152

End Page

7161