Biclustering Expression Data Based on Expanding Localized Substructures
| gdc.relation.journal | International Conference on Bioinformatics and Computational Biology | en_US |
| dc.contributor.author | Erten, Cesim | |
| dc.contributor.author | Sözdinler, Melih | |
| dc.contributor.other | Computer Engineering | |
| dc.contributor.other | 05. Faculty of Engineering and Natural Sciences | |
| dc.contributor.other | 01. Kadir Has University | |
| dc.date.accessioned | 2019-06-27T08:05:47Z | |
| dc.date.available | 2019-06-27T08:05:47Z | |
| dc.date.issued | 2009 | |
| dc.description.abstract | Biclustering gene expression data is the problem of extracting submatrices of genes and conditions exhibiting significant correlation across both the rows and the columns of a data matrix of expression values. We provide a method LEB (Localize-and-Extract Biclusters) which reduces the search space into local neighborhoods within the matrix by first localizing correlated structures. The localization procedure takes its roots from effective use of graph-theoretical methods applied to problems exhibiting a similar structure to that of biclustering. Once interesting structures are localized the search space reduces to small neighborhoods and the biclusters are extracted from these localities. We evaluate the effectiveness of our method with extensive experiments both using artificial and real datasets. | en_US] |
| dc.identifier.citationcount | 5 | |
| dc.identifier.doi | 10.1007/978-3-642-00727-9_22 | en_US |
| dc.identifier.isbn | 978-3-642-00726-2 | |
| dc.identifier.issn | 0302-9743 | en_US |
| dc.identifier.issn | 1611-3349 | en_US |
| dc.identifier.issn | 0302-9743 | |
| dc.identifier.issn | 1611-3349 | |
| dc.identifier.scopus | 2-s2.0-68249117368 | en_US |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/1116 | |
| dc.identifier.uri | https://doi.org/10.1007/978-3-642-00727-9_22 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer-Verlag Berlin | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.title | Biclustering Expression Data Based on Expanding Localized Substructures | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Erten, Cesim | en_US |
| gdc.author.institutional | Erten, Cesim | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
| gdc.description.endpage | + | |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 224 | en_US |
| gdc.description.volume | 5462 | en_US |
| gdc.identifier.openalex | W1608091105 | |
| gdc.identifier.wos | WOS:000265785800022 | en_US |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 2.0 | |
| gdc.oaire.influence | 2.9753566E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Enrichment ratio | |
| gdc.oaire.keywords | Localize substructure | |
| gdc.oaire.keywords | Bioinformatics | |
| gdc.oaire.keywords | Real data sets | |
| gdc.oaire.keywords | Biclustering algorithm | |
| gdc.oaire.keywords | Biclusters | |
| gdc.oaire.keywords | Gene | |
| gdc.oaire.keywords | Matrix algebra | |
| gdc.oaire.keywords | Data matrices | |
| gdc.oaire.keywords | Biology | |
| gdc.oaire.keywords | Microarray data | |
| gdc.oaire.keywords | Yeast cell cycle | |
| gdc.oaire.keywords | Bipartite graph | |
| gdc.oaire.keywords | Matrix | |
| gdc.oaire.keywords | Search spaces | |
| gdc.oaire.keywords | Biclustering | |
| gdc.oaire.keywords | Sub-matrices | |
| gdc.oaire.keywords | Gene expression data | |
| gdc.oaire.keywords | N/A | |
| gdc.oaire.keywords | Adaptive noise | |
| gdc.oaire.keywords | Expression data | |
| gdc.oaire.keywords | Gene expression | |
| gdc.oaire.keywords | Localization procedure | |
| gdc.oaire.keywords | Algorithms | |
| gdc.oaire.popularity | 5.2634297E-10 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0301 basic medicine | |
| gdc.oaire.sciencefields | 0206 medical engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 03 medical and health sciences | |
| gdc.openalex.fwci | 1.736 | |
| gdc.openalex.normalizedpercentile | 0.88 | |
| gdc.opencitations.count | 5 | |
| gdc.plumx.crossrefcites | 4 | |
| gdc.plumx.mendeley | 9 | |
| gdc.plumx.scopuscites | 7 | |
| gdc.scopus.citedcount | 7 | |
| gdc.wos.citedcount | 5 | |
| relation.isAuthorOfPublication | ba94d962-58f9-4c10-bdc8-667be0ec3b67 | |
| relation.isAuthorOfPublication.latestForDiscovery | ba94d962-58f9-4c10-bdc8-667be0ec3b67 | |
| relation.isOrgUnitOfPublication | fd8e65fe-c3b3-4435-9682-6cccb638779c | |
| relation.isOrgUnitOfPublication | 2457b9b3-3a3f-4c17-8674-7f874f030d96 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | fd8e65fe-c3b3-4435-9682-6cccb638779c |