A Yarn-Based Energy-Aware Scheduling Method for Big Data Applications Under Deadline Constraints

dc.authorid Jafari Navimipour, Nima/0000-0002-5514-5536
dc.authorid Jabbehdari, Sam/0000-0001-5168-5271
dc.authorid Rahmani, Amir Masoud/0000-0001-8641-6119
dc.authorid Shabestari, Fatemeh/0000-0003-1926-4674
dc.authorwosid Jafari Navimipour, Nima/AAF-5662-2021
dc.authorwosid Jabbehdari, Sam/AAO-8396-2021
dc.authorwosid Rahmani, Amir Masoud/K-2702-2013
dc.contributor.author Shabestari, Fatemeh
dc.contributor.author Jafari Navimipour, Nima
dc.contributor.author Rahmani, Amir Masoud
dc.contributor.author Navimipour, Nima Jafari
dc.contributor.author Jabbehdari, Sam
dc.contributor.other Computer Engineering
dc.date.accessioned 2023-10-19T15:12:38Z
dc.date.available 2023-10-19T15:12:38Z
dc.date.issued 2022
dc.department-temp [Shabestari, Fatemeh; Rahmani, Amir Masoud] Islamic Azad Univ, Dept Comp Engn, Sci & Res Branch, Tehran, Iran; [Rahmani, Amir Masoud] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, 123 Univ Rd,Sect 3, Touliu 64002, Yunlin, Taiwan; [Navimipour, Nima Jafari] Kadir Has Univ, Dept Comp Engn, Istanbul, Turkey; [Navimipour, Nima Jafari] Islamic Azad Univ, Dept Comp Engn, Tabriz Branch, Tabriz, Iran; [Jabbehdari, Sam] Islamic Azad Univ, Dept Comp Engn, North Tehran Branch, Tehran, Iran en_US
dc.description.abstract Hadoop is a distributed framework for processing big data. One of the critical parts of Hadoop is YARN, which carries out scheduling and resource management. A scheduling algorithm should consider multiple objectives. However, YARN schedulers do not consider the Service Level Agreement (SLA) and the energy-related issues. The present paper proposes an energy-efficient deadline-aware model for the scheduling problem. The scheduling issue is an NP-hard problem regarding the deadline of applications and reducing energy. Hence, an Energy-efficient Deadline-aware Scheduling Algorithm based on the Moth-Flame Optimization algorithm (EDSA-MFO) is suggested to minimize the energy consumption and execute the application within a given soft deadline. Moreover, the earliest deadline first-based (EDF-based) heuristic approach is proposed to decode a moth into a scheduling solution. The algorithm is implemented for both static and dynamic scheduling. To evaluate the performance of the proposed algorithm, extensive simulations are conducted. The outcomes demonstrated that the suggested method could find near-optimal scheduling. It outperforms the YARN default FIFO scheduler, EDF, the energy-aware greedy algorithm (EAGA), and the deadline-aware energy-efficient MapReduce scheduling algorithm for YARN (EMRSAY) in total cluster energy consumption and meeting job deadline. en_US
dc.identifier.citationcount 3
dc.identifier.doi 10.1007/s10723-022-09627-w en_US
dc.identifier.issn 1570-7873
dc.identifier.issn 1572-9184
dc.identifier.issue 4 en_US
dc.identifier.scopus 2-s2.0-85141147374 en_US
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1007/s10723-022-09627-w
dc.identifier.uri https://hdl.handle.net/20.500.12469/5495
dc.identifier.volume 20 en_US
dc.identifier.wos WOS:000879023000001 en_US
dc.identifier.wosquality Q1
dc.khas 20231019-WoS en_US
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Journal of Grid Computing en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 6
dc.subject Virtual Machine En_Us
dc.subject Optimization En_Us
dc.subject Efficiency En_Us
dc.subject Algorithm En_Us
dc.subject Consolidation En_Us
dc.subject Management En_Us
dc.subject Jobs En_Us
dc.subject Virtual Machine
dc.subject Optimization
dc.subject Hadoop en_US
dc.subject Efficiency
dc.subject Scheduling en_US
dc.subject Algorithm
dc.subject Deadline en_US
dc.subject Consolidation
dc.subject Energy efficiency en_US
dc.subject Management
dc.subject Metaheuristic en_US
dc.subject Jobs
dc.subject Moth-Flame en_US
dc.title A Yarn-Based Energy-Aware Scheduling Method for Big Data Applications Under Deadline Constraints en_US
dc.type Article en_US
dc.wos.citedbyCount 4
dspace.entity.type Publication
relation.isAuthorOfPublication 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isAuthorOfPublication.latestForDiscovery 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5495.pdf
Size:
3.41 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text