Data Augmentation With In-Context Learning and Comparative Evaluation in Math Word Problem Solving

dc.contributor.author Yigit,G.
dc.contributor.author Amasyali,M.F.
dc.date.accessioned 2024-06-23T21:39:23Z
dc.date.available 2024-06-23T21:39:23Z
dc.date.issued 2024
dc.description.abstract Math Word Problem (MWP) solving presents a challenging task in Natural Language Processing (NLP). This study aims to provide MWP solvers with a more diverse training set, ultimately improving their ability to solve various math problems. We propose several methods for data augmentation by modifying the problem texts and equations, such as synonym replacement, rule-based: question replacement, and rule based: reversing question methodologies over two English MWP datasets. This study extends by introducing a new in-context learning augmentation method, employing the Llama-7b language model. This approach involves instruction-based prompting for rephrasing the math problem texts. Performance evaluations are conducted on 9 baseline models, revealing that augmentation methods outperform baseline models. Moreover, concatenating examples generated by various augmentation methods further improves performance. © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024. en_US
dc.description.sponsorship Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK, (120E100); Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/s42979-024-02853-x
dc.identifier.issn 2662-995X
dc.identifier.issn 2661-8907
dc.identifier.scopus 2-s2.0-85191812688
dc.identifier.uri https://doi.org/10.1007/s42979-024-02853-x
dc.identifier.uri https://hdl.handle.net/20.500.12469/5872
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof SN Computer Science en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Data augmentation en_US
dc.subject In-context learning en_US
dc.subject Llama-7b en_US
dc.subject Math word problem solving en_US
dc.subject Question answering en_US
dc.title Data Augmentation With In-Context Learning and Comparative Evaluation in Math Word Problem Solving en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Yiğit, Gülsüm
gdc.author.scopusid 57215312808
gdc.author.scopusid 55664402200
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp Yigit G., Department of Computer Engineering, Yildiz Technical University, Istanbul, Turkey, Department of Computer Engineering, Kadir Has University, Istanbul, Turkey; Amasyali M.F., Department of Computer Engineering, Yildiz Technical University, Istanbul, Turkey en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 5 en_US
gdc.identifier.openalex W4396241594
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen true
gdc.oaire.keywords FOS: Computer and information sciences
gdc.oaire.keywords Computer Science - Computation and Language
gdc.oaire.keywords Computation and Language (cs.CL)
gdc.oaire.popularity 2.9478422E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.0
gdc.opencitations.count 0
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
relation.isAuthorOfPublication 363c092e-cd4b-400e-8261-ca5b99b1bea9
relation.isAuthorOfPublication.latestForDiscovery 363c092e-cd4b-400e-8261-ca5b99b1bea9
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files