An Evaluation of AI Models' Performance for Three Geothermal Sites

dc.authoridduzgun, sebnem/0000-0001-7013-9241
dc.authoridDemir, Ebubekir/0000-0002-1680-3719
dc.authorscopusid57195223052
dc.authorscopusid56705577200
dc.authorscopusid57203966269
dc.authorscopusid6508150239
dc.authorwosidduzgun, sebnem/F-4244-2017
dc.contributor.authorDemir, Ebubekir
dc.contributor.authorCavur, Mahmut
dc.contributor.authorYu, Yu-Ting
dc.contributor.authorDuzgun, H. Sebnem
dc.date.accessioned2024-10-15T19:41:07Z
dc.date.available2024-10-15T19:41:07Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-temp[Demir, Ebubekir; Cavur, Mahmut; Yu, Yu-Ting; Duzgun, H. Sebnem] Colorado Sch Mines, Min Engn Dept, Golden, CO 80401 USA; [Cavur, Mahmut] Kadir Has Univ, Management Informat Syst Dept, TR-34083 Istanbul, Turkiyeen_US
dc.descriptionduzgun, sebnem/0000-0001-7013-9241; Demir, Ebubekir/0000-0002-1680-3719en_US
dc.description.abstractCurrent artificial intelligence (AI) applications in geothermal exploration are tailored to specific geothermal sites, limiting their transferability and broader applicability. This study aims to develop a globally applicable and transferable geothermal AI model to empower the exploration of geothermal resources. This study presents a methodology for adopting geothermal AI that utilizes known indicators of geothermal areas, including mineral markers, land surface temperature (LST), and faults. The proposed methodology involves a comparative analysis of three distinct geothermal sites-Brady, Desert Peak, and Coso. The research plan includes self-testing to understand the unique characteristics of each site, followed by dependent and independent tests to assess cross-compatibility and model transferability. The results indicate that Desert Peak and Coso geothermal sites are cross-compatible due to their similar geothermal characteristics, allowing the AI model to be transferable between these sites. However, Brady is found to be incompatible with both Desert Peak and Coso. The geothermal AI model developed in this study demonstrates the potential for transferability and applicability to other geothermal sites with similar characteristics, enhancing the efficiency and effectiveness of geothermal resource exploration. This advancement in geothermal AI modeling can significantly contribute to the global expansion of geothermal energy, supporting sustainable energy goals.en_US
dc.description.sponsorshipUS Department of Energy [DE-EE0008760]en_US
dc.description.sponsorshipThis research was funded by the US Department of Energy grant number DE-EE0008760, and the APC was funded by DE-EE0008760.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.3390/en17133255
dc.identifier.issn1996-1073
dc.identifier.issue13en_US
dc.identifier.scopus2-s2.0-85198524168
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.3390/en17133255
dc.identifier.urihttps://hdl.handle.net/20.500.12469/6409
dc.identifier.volume17en_US
dc.identifier.wosWOS:001269885400001
dc.identifier.wosqualityQ3
dc.institutionauthorÇavur, Mahmut
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectgeothermal AIen_US
dc.subjectgeothermal delineationen_US
dc.subjectmodified geothermal AIen_US
dc.subjectrenewable energyen_US
dc.subjectsustainable energyen_US
dc.subjectgeothermal resource assessmenten_US
dc.titleAn Evaluation of AI Models' Performance for Three Geothermal Sitesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication463fefd7-0e68-4479-ad37-0ea65fa6ae01
relation.isAuthorOfPublication.latestForDiscovery463fefd7-0e68-4479-ad37-0ea65fa6ae01

Files