An Evaluation of AI Models' Performance for Three Geothermal Sites

dc.contributor.author Demir, Ebubekir
dc.contributor.author Cavur, Mahmut
dc.contributor.author Yu, Yu-Ting
dc.contributor.author Duzgun, H. Sebnem
dc.contributor.other Management Information Systems
dc.contributor.other 03. Faculty of Economics, Administrative and Social Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2024-10-15T19:41:07Z
dc.date.available 2024-10-15T19:41:07Z
dc.date.issued 2024
dc.description duzgun, sebnem/0000-0001-7013-9241; Demir, Ebubekir/0000-0002-1680-3719 en_US
dc.description.abstract Current artificial intelligence (AI) applications in geothermal exploration are tailored to specific geothermal sites, limiting their transferability and broader applicability. This study aims to develop a globally applicable and transferable geothermal AI model to empower the exploration of geothermal resources. This study presents a methodology for adopting geothermal AI that utilizes known indicators of geothermal areas, including mineral markers, land surface temperature (LST), and faults. The proposed methodology involves a comparative analysis of three distinct geothermal sites-Brady, Desert Peak, and Coso. The research plan includes self-testing to understand the unique characteristics of each site, followed by dependent and independent tests to assess cross-compatibility and model transferability. The results indicate that Desert Peak and Coso geothermal sites are cross-compatible due to their similar geothermal characteristics, allowing the AI model to be transferable between these sites. However, Brady is found to be incompatible with both Desert Peak and Coso. The geothermal AI model developed in this study demonstrates the potential for transferability and applicability to other geothermal sites with similar characteristics, enhancing the efficiency and effectiveness of geothermal resource exploration. This advancement in geothermal AI modeling can significantly contribute to the global expansion of geothermal energy, supporting sustainable energy goals. en_US
dc.description.sponsorship US Department of Energy [DE-EE0008760] en_US
dc.description.sponsorship This research was funded by the US Department of Energy grant number DE-EE0008760, and the APC was funded by DE-EE0008760. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.3390/en17133255
dc.identifier.issn 1996-1073
dc.identifier.scopus 2-s2.0-85198524168
dc.identifier.uri https://doi.org/10.3390/en17133255
dc.identifier.uri https://hdl.handle.net/20.500.12469/6409
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.ispartof Energies
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject geothermal AI en_US
dc.subject geothermal delineation en_US
dc.subject modified geothermal AI en_US
dc.subject renewable energy en_US
dc.subject sustainable energy en_US
dc.subject geothermal resource assessment en_US
dc.title An Evaluation of AI Models' Performance for Three Geothermal Sites en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id duzgun, sebnem/0000-0001-7013-9241
gdc.author.id Demir, Ebubekir/0000-0002-1680-3719
gdc.author.institutional Çavur, Mahmut
gdc.author.scopusid 57195223052
gdc.author.scopusid 56705577200
gdc.author.scopusid 57203966269
gdc.author.scopusid 6508150239
gdc.author.wosid duzgun, sebnem/F-4244-2017
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Demir, Ebubekir; Cavur, Mahmut; Yu, Yu-Ting; Duzgun, H. Sebnem] Colorado Sch Mines, Min Engn Dept, Golden, CO 80401 USA; [Cavur, Mahmut] Kadir Has Univ, Management Informat Syst Dept, TR-34083 Istanbul, Turkiye en_US
gdc.description.issue 13 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 3255
gdc.description.volume 17 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4400241707
gdc.identifier.wos WOS:001269885400001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.7034517E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Technology
gdc.oaire.keywords geothermal resource assessment
gdc.oaire.keywords T
gdc.oaire.keywords geothermal delineation
gdc.oaire.keywords geothermal AI
gdc.oaire.keywords sustainable energy
gdc.oaire.keywords renewable energy
gdc.oaire.keywords modified geothermal AI
gdc.oaire.popularity 4.8138973E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0105 earth and related environmental sciences
gdc.openalex.fwci 0.986
gdc.openalex.normalizedpercentile 0.67
gdc.opencitations.count 0
gdc.plumx.mendeley 17
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.wos.citedcount 1
relation.isAuthorOfPublication 463fefd7-0e68-4479-ad37-0ea65fa6ae01
relation.isAuthorOfPublication.latestForDiscovery 463fefd7-0e68-4479-ad37-0ea65fa6ae01
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files