On the Uniqueness of Epidemic Models Fitting a Normalized Curve of Removed Individuals

dc.contributor.author Bilge,A.H.
dc.contributor.author Samanlioglu,F.
dc.contributor.author Ergonul,O.
dc.date.accessioned 2024-10-15T19:41:45Z
dc.date.available 2024-10-15T19:41:45Z
dc.date.issued 2015
dc.description.abstract The susceptible-infected-removed (SIR) and the susceptible-exposed-infected-removed (SEIR) epidemic models with constant parameters are adequate for describing the time evolution of seasonal diseases for which available data usually consist of fatality reports. The problems associated with the determination of system parameters starts with the inference of the number of removed individuals from fatality data, because the infection to death period may depend on health care factors. Then, one encounters numerical sensitivity problems for the determination of the system parameters from a correct but noisy representative of the number of removed individuals. Finally as the available data is necessarily a normalized one, the models fitting this data may not be unique. We prove that the parameters of the (SEIR) model cannot be determined from the knowledge of a normalized curve of “Removed” individuals and we show that the proportion of removed individuals, R(t), is invariant under the interchange of the incubation and infection periods and corresponding scalings of the contact rate. On the other hand we prove that the SIR model fitting a normalized curve of removed individuals is unique and we give an implicit relation for the system parameters in terms of the values of (Formula presented.) and (Formula presented.), where Rf is the steady state value of R(t) and Rm and (Formula presented.) are the values of R(t) and its derivative at the inflection point tm of R(t). We use these implicit relations to provide a robust method for the estimation of the system parameters and we apply this procedure to the fatality data for the H1N1 epidemic in the Czech Republic during 2009. We finally discuss the inference of the number of removed individuals from observational data, using a clinical survey conducted at major hospitals in Istanbul, Turkey, during 2009 H1N1 epidemic. © 2014, Springer-Verlag Berlin Heidelberg. en_US
dc.identifier.citationcount 7
dc.identifier.doi 10.1007/s00285-014-0838-z
dc.identifier.issn 0303-6812
dc.identifier.issn 1432-1416
dc.identifier.scopus 2-s2.0-84941336130
dc.identifier.uri https://doi.org/10.1007/s00285-014-0838-z
dc.identifier.uri https://hdl.handle.net/20.500.12469/6461
dc.language.iso en en_US
dc.publisher Springer Verlag en_US
dc.relation.ispartof Journal of Mathematical Biology en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Dynamical systems en_US
dc.subject Epidemic models en_US
dc.subject Fatality data en_US
dc.subject Inference en_US
dc.subject SEIR model en_US
dc.subject SIR model en_US
dc.title On the Uniqueness of Epidemic Models Fitting a Normalized Curve of Removed Individuals en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Bilge, Ayşe Hümeyra
gdc.author.institutional Samanlıoğlu, Funda
gdc.author.scopusid 7005981141
gdc.author.scopusid 23012602800
gdc.author.scopusid 55881336400
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp Bilge A.H., Department of Industrial Engineering, Kadir Has University, Istanbul, Turkey; Samanlioglu F., Department of Industrial Engineering, Kadir Has University, Istanbul, Turkey; Ergonul O., Medical School, Koc University, Istanbul, Turkey en_US
gdc.description.endpage 794 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 767 en_US
gdc.description.volume 71 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W2077878196
gdc.identifier.pmid 25312413
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 3.3979934E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Models, Statistical
gdc.oaire.keywords Turkey
gdc.oaire.keywords Fatality data
gdc.oaire.keywords Mathematical Concepts
gdc.oaire.keywords SEIR model
gdc.oaire.keywords Models, Biological
gdc.oaire.keywords Epidemic models
gdc.oaire.keywords Influenza A Virus, H1N1 Subtype
gdc.oaire.keywords Inference
gdc.oaire.keywords Dynamical systems
gdc.oaire.keywords Influenza, Human
gdc.oaire.keywords Humans
gdc.oaire.keywords Computer Simulation
gdc.oaire.keywords Seasons
gdc.oaire.keywords SIR model
gdc.oaire.keywords Epidemics
gdc.oaire.keywords Pandemics
gdc.oaire.keywords Czech Republic
gdc.oaire.popularity 5.877397E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0301 basic medicine
gdc.oaire.sciencefields 0303 health sciences
gdc.oaire.sciencefields 03 medical and health sciences
gdc.openalex.fwci 0.375
gdc.openalex.normalizedpercentile 0.66
gdc.opencitations.count 10
gdc.plumx.crossrefcites 6
gdc.plumx.mendeley 36
gdc.plumx.pubmedcites 3
gdc.plumx.scopuscites 7
gdc.scopus.citedcount 7
relation.isAuthorOfPublication 1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isAuthorOfPublication 4e74c274-0592-4792-ac57-00061bd273aa
relation.isAuthorOfPublication.latestForDiscovery 1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isOrgUnitOfPublication 28868d0c-e9a4-4de1-822f-c8df06d2086a
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 28868d0c-e9a4-4de1-822f-c8df06d2086a

Files