A Review of Path Planning Algorithms in Maritime Autonomous Surface Ships: Navigation Safety Perspective

dc.contributor.author Ozturk, Ulku
dc.contributor.author Akdag, Melih
dc.contributor.author Ayabakan, Tarik
dc.date.accessioned 2023-10-19T15:12:15Z
dc.date.available 2023-10-19T15:12:15Z
dc.date.issued 2022
dc.description.abstract Unmanned maritime systems are evolving in a rapidly changing environment. Although the regulation and international law processes are still in progress, there are numerous research attempts regarding autonomous maritime vehicle path planning particularly. In contrast to ground and air autonomous path planning, ship path planning has numerous pitfalls such as safety, complexity and environmental dynamics that hinder the emergence of reliable autonomous systems. This review explores the path planning algorithms of autonomous maritime vehicles and their collision regulation relevance in order to reveal how the research community handles this issue. Our relevant findings point out that there are still many traffic rules to be dealt by path planning algorithms. Algorithms that can be calibrated in terms of safe distance, safe speed and etc. may be deemed more compliant after regulation amendments. en_US
dc.identifier.doi 10.1016/j.oceaneng.2022.111010 en_US
dc.identifier.issn 0029-8018
dc.identifier.issn 1873-5258
dc.identifier.scopus 2-s2.0-85127150305 en_US
dc.identifier.uri https://doi.org/10.1016/j.oceaneng.2022.111010
dc.identifier.uri https://hdl.handle.net/20.500.12469/5387
dc.language.iso en en_US
dc.publisher Pergamon-Elsevier Science Ltd en_US
dc.relation.ispartof Ocean Engineering en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Obstacle Avoidance Algorithm En_Us
dc.subject Collision Risk-Assessment En_Us
dc.subject Mobile Robot En_Us
dc.subject Colregs En_Us
dc.subject Vehicles En_Us
dc.subject System En_Us
dc.subject Optimization En_Us
dc.subject Strategy En_Us
dc.subject Obstacle Avoidance Algorithm
dc.subject Collision Risk-Assessment
dc.subject Mobile Robot
dc.subject Colregs
dc.subject Vehicles
dc.subject Literature review en_US
dc.subject System
dc.subject Autonomous surface vehicle en_US
dc.subject Optimization
dc.subject Motion planning en_US
dc.subject Strategy
dc.subject Navigation safety en_US
dc.title A Review of Path Planning Algorithms in Maritime Autonomous Surface Ships: Navigation Safety Perspective en_US
dc.type Review en_US
dspace.entity.type Publication
gdc.author.id AYABAKAN, TARIK/0000-0003-0605-0378
gdc.author.id Ozturk, Ulku/0000-0003-0737-151X
gdc.author.id Akdag, Melih/0000-0002-6879-1799
gdc.bip.impulseclass C2
gdc.bip.influenceclass C3
gdc.bip.popularityclass C3
gdc.coar.access metadata only access
gdc.coar.type text::review
gdc.collaboration.industrial false
gdc.description.departmenttemp [Ozturk, Ulku] Turkish Naval Forces, Ankara, Turkey; [Akdag, Melih] Norwegian Univ Sci & Technol, Dept Engn Cybernet, Trondheim, Norway; [Ayabakan, Tarik] Kadir Has Univ, Dept Elect Elect Engn, Istanbul, Turkey en_US
gdc.description.publicationcategory Diğer en_US
gdc.description.scopusquality Q1
gdc.description.startpage 111010
gdc.description.volume 251 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4221125177
gdc.identifier.wos WOS:000790572100005 en_US
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 152.0
gdc.oaire.influence 1.2059403E-8
gdc.oaire.isgreen false
gdc.oaire.popularity 1.2089892E-7
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0209 industrial biotechnology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 30.68010828
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 134
gdc.plumx.crossrefcites 138
gdc.plumx.mendeley 108
gdc.plumx.scopuscites 166
gdc.scopus.citedcount 179
gdc.wos.citedcount 144
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery b20623fc-1264-4244-9847-a4729ca7508c

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5387.pdf
Size:
2.76 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text