Rapidly Varying Sparse Channel Tracking With Hybrid Kalman-Omp Algorithm

dc.contributor.author Büyükşar, Ayşe Betül
dc.contributor.author Şenol, Habib
dc.contributor.author Şenol, Habib
dc.contributor.author Erküçük, Serhat
dc.contributor.author Erküçük, Serhat
dc.contributor.author Cirpan, Hakan Ali
dc.contributor.other Computer Engineering
dc.contributor.other Electrical-Electronics Engineering
dc.date.accessioned 2019-06-27T08:02:28Z
dc.date.available 2019-06-27T08:02:28Z
dc.date.issued 2019
dc.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
dc.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
dc.description.abstract It is expected from future communication standards that channel estimation algorithms should be able to operate over very fast varying frequency selective channel models. Therefore in this study autoregressive (AR) modeled fast varying channel has been considered and tracked with Kalman filter over one orthogonal frequency division multiplexing (OFDM) symbol. Channel sparsity is exploited which decreases the complexity requirements of the Kalman algorithm. Since Kalman filter is not directly applicable to sparse channels orthogonal matching pursuit (OMP) algorithm is modified for AR modeled sparse signal estimation. Also by using windows sparsity detection errors have been decreased. The simulation results showed that sparse fast varying channel can be tracked with the proposed hybrid Kalman-OMP algorithm and windowing method offers improved MSE results. en_US]
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/978-981-13-0408-8_25 en_US
dc.identifier.endpage 298
dc.identifier.isbn 978-981-13-0408-8
dc.identifier.isbn 978-981-13-0407-1
dc.identifier.issn 1876-1100 en_US
dc.identifier.issn 1876-1119 en_US
dc.identifier.issn 1876-1100
dc.identifier.issn 1876-1119
dc.identifier.scopus 2-s2.0-85049957315 en_US
dc.identifier.scopusquality Q4
dc.identifier.startpage 289 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/626
dc.identifier.uri https://doi.org/10.1007/978-981-13-0408-8_25
dc.identifier.volume 504 en_US
dc.identifier.wos WOS:000454345100025 en_US
dc.institutionauthor Şenol, Habib en_US
dc.institutionauthor Erküçük, Serhat en_US
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.journal International Telecommunications Conference en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject OFDM en_US
dc.subject Fast time-varying channel en_US
dc.subject Autoregressive model en_US
dc.subject Kalman en_US
dc.subject OMP en_US
dc.subject Sparse channel tracking en_US
dc.title Rapidly Varying Sparse Channel Tracking With Hybrid Kalman-Omp Algorithm en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication 2c09cda4-9d83-4836-8695-b36fc6c9c4ec
relation.isAuthorOfPublication 440e977b-46c6-40d4-b970-99b1e357c998
relation.isAuthorOfPublication.latestForDiscovery 2c09cda4-9d83-4836-8695-b36fc6c9c4ec
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files