The Deep Learning Applications in Iot-Based Bio- and Medical Informatics: a Systematic Literature Review

dc.contributor.author Amiri, Zahra
dc.contributor.author Heidari, Arash
dc.contributor.author Navimipour, Nima Jafari
dc.contributor.author Esmaeilpour, Mansour
dc.contributor.author Yazdani, Yalda
dc.date.accessioned 2024-06-23T21:37:03Z
dc.date.available 2024-06-23T21:37:03Z
dc.date.issued 2024
dc.description Heidari, Arash/0000-0003-4279-8551 en_US
dc.description.abstract Nowadays, machine learning (ML) has attained a high level of achievement in many contexts. Considering the significance of ML in medical and bioinformatics owing to its accuracy, many investigators discussed multiple solutions for developing the function of medical and bioinformatics challenges using deep learning (DL) techniques. The importance of DL in Internet of Things (IoT)-based bio- and medical informatics lies in its ability to analyze and interpret large amounts of complex and diverse data in real time, providing insights that can improve healthcare outcomes and increase efficiency in the healthcare industry. Several applications of DL in IoT-based bio- and medical informatics include diagnosis, treatment recommendation, clinical decision support, image analysis, wearable monitoring, and drug discovery. The review aims to comprehensively evaluate and synthesize the existing body of the literature on applying deep learning in the intersection of the IoT with bio- and medical informatics. In this paper, we categorized the most cutting-edge DL solutions for medical and bioinformatics issues into five categories based on the DL technique utilized: convolutional neural network, recurrent neural network, generative adversarial network, multilayer perception, and hybrid methods. A systematic literature review was applied to study each one in terms of effective properties, like the main idea, benefits, drawbacks, methods, simulation environment, and datasets. After that, cutting-edge research on DL approaches and applications for bioinformatics concerns was emphasized. In addition, several challenges that contributed to DL implementation for medical and bioinformatics have been addressed, which are predicted to motivate more studies to develop medical and bioinformatics research progressively. According to the findings, most articles are evaluated using features like accuracy, sensitivity, specificity, F-score, latency, adaptability, and scalability. en_US
dc.description.sponsorship Kadir Has University en_US
dc.description.sponsorship No Statement Available en_US
dc.identifier.doi 10.1007/s00521-023-09366-3
dc.identifier.issn 0941-0643
dc.identifier.issn 1433-3058
dc.identifier.scopus 2-s2.0-85182225969
dc.identifier.uri https://doi.org/10.1007/s00521-023-09366-3
dc.identifier.uri https://hdl.handle.net/20.500.12469/5688
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.relation.ispartof Neural Computing and Applications
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Deep learning en_US
dc.subject Machine learning en_US
dc.subject Bioinformatics en_US
dc.subject IoT en_US
dc.subject Medical informatics en_US
dc.title The Deep Learning Applications in Iot-Based Bio- and Medical Informatics: a Systematic Literature Review en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Heidari, Arash/0000-0003-4279-8551
gdc.author.scopusid 58579282700
gdc.author.scopusid 57217424609
gdc.author.scopusid 55897274300
gdc.author.scopusid 36607567000
gdc.author.scopusid 57452812100
gdc.author.wosid Amiri, Zahra/KHU-7955-2024
gdc.author.wosid Heidari, Arash/AAK-9761-2021
gdc.bip.impulseclass C2
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Amiri, Zahra] Islamic Azad Univ, Dept Comp Engn, Tabriz Branch, Tabriz, Iran; [Heidari, Arash] Hal Univ, Dept Software Engn, TR-34060 Istanbul, Turkiye; [Navimipour, Nima Jafari] Kadir Has Univ, Dept Comp Engn, Istanbul, Turkiye; [Navimipour, Nima Jafari] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, Yunlin 64002, Taiwan; [Esmaeilpour, Mansour] Islamic Azad Univ, Comp Engn Dept, Hamedan Branch, Hamadan, Iran; [Yazdani, Yalda] Tabriz Univ Med Sci, Immunol Res Ctr, Tabriz, Iran en_US
gdc.description.endpage 5797
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 5757
gdc.description.volume 36
gdc.description.wosquality Q1
gdc.identifier.openalex W4390837884
gdc.identifier.wos WOS:001142391800003
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 130.0
gdc.oaire.influence 9.943512E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.01077035E-7
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0301 basic medicine
gdc.oaire.sciencefields 0303 health sciences
gdc.oaire.sciencefields 03 medical and health sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 93.26166817
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 50
gdc.plumx.mendeley 141
gdc.plumx.newscount 1
gdc.plumx.scopuscites 139
gdc.scopus.citedcount 141
gdc.virtual.author Jafari Navimipour, Nima
gdc.wos.citedcount 112
relation.isAuthorOfPublication 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isAuthorOfPublication.latestForDiscovery 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files