Decoding Compositional Complexity: Identifying Composers Using a Model Fusion-Based Approach With Nonlinear Signal Processing and Chaotic Dynamics

dc.contributor.author Mirza, Fuat Kaan
dc.contributor.author Baykas, Tuncer
dc.contributor.author Hekimoglu, Mustafa
dc.contributor.author Pekcan, Onder
dc.contributor.author Tuncay, Gonul Pacaci
dc.date.accessioned 2024-10-15T19:40:35Z
dc.date.available 2024-10-15T19:40:35Z
dc.date.issued 2024
dc.description MIRZA, FUAT KAAN/0000-0002-7664-0632; PEKCAN, Onder/0000-0002-0082-8209 en_US
dc.description.abstract Music, a universal medium that effortlessly transcends the confines of language and culture, serves as a vessel for the distinctive expression of a composer's ingenuity, particularly palpable through the elaborate symphony of melodies, harmonies, and rhythms. This phenomenon is acutely observable in the realm of Turkish Classical Music, where the identification of individual composers poses a formidable challenge due to a confluence of diverse stylistic expressions and sophisticated techniques. Shaped by centuries of cultural interchanges, this genre is celebrated for its convoluted rhythmic frameworks and deep melodic modes, often exhibiting fractal characteristics that compound the complexity of composer classification based on mere audio signals. In response to these complexities, this study introduces an advanced analytical paradigm that amalgamates Multi-resolution analysis, spectral entropy assessments, and a spectrum of multidimensional chaotic and statistical descriptors. By invoking chaos theory, the research delineates distinct patterns and features inherent to musical compositions, subsequently deploying these discoveries for composer categorization. Employing a model fusion-based strategy, the approach utilizes esteemed base estimators for section-level probabilistic determinations, subsequently amalgamated at the song level through a Long Short-Term Memory (LSTM) neural network model to classify a corpus of 380 compositions from 15 distinct composers. The results of this study not only highlight the efficacy of chaos-based approaches in Musical Information Retrieval but also provide a nuanced understanding of the unique characteristics of Turkish Classical Music, thus advancing the boundaries of how musicological data is scrutinized and conceptualized within scholarly discourse. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.chaos.2024.115450
dc.identifier.issn 0960-0779
dc.identifier.issn 1873-2887
dc.identifier.scopus 2-s2.0-85202763176
dc.identifier.uri https://doi.org/10.1016/j.chaos.2024.115450
dc.identifier.uri https://hdl.handle.net/20.500.12469/6380
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.ispartof Chaos, Solitons & Fractals
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Complexity classification en_US
dc.subject Nonlinear signal processing en_US
dc.subject Spectral entropy en_US
dc.subject Composer classification en_US
dc.subject Musical information retrieval en_US
dc.subject Turkish classical music en_US
dc.title Decoding Compositional Complexity: Identifying Composers Using a Model Fusion-Based Approach With Nonlinear Signal Processing and Chaotic Dynamics en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id MIRZA, FUAT KAAN/0000-0002-7664-0632
gdc.author.id PEKCAN, Onder/0000-0002-0082-8209
gdc.author.institutional Baykaş, Tunçer
gdc.author.institutional Hekimoğlu, Mustafa
gdc.author.institutional Pekcan, Mehmet Önder
gdc.author.scopusid 58641292900
gdc.author.scopusid 24328990900
gdc.author.scopusid 57193505462
gdc.author.scopusid 35479982700
gdc.author.scopusid 59179761700
gdc.author.wosid Hekimoglu, Mustafa/GRF-1500-2022
gdc.author.wosid MIRZA, FUAT KAAN/JJC-1595-2023
gdc.author.wosid PEKCAN, Onder/Y-3158-2018
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Mirza, Fuat Kaan; Baykas, Tuncer; Hekimoglu, Mustafa; Pekcan, Onder] Kadir Has Univ, Fac Engn & Nat Sci, TR-34083 Istanbul, Turkiye; [Tuncay, Gonul Pacaci] Istanbul Univ, Ottoman Period Mus Applicat & Res Ctr, TR-34467 Istanbul, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 115450
gdc.description.volume 187 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4402081638
gdc.identifier.wos WOS:001306431600001
gdc.oaire.diamondjournal false
gdc.oaire.impulse 5.0
gdc.oaire.influence 2.853123E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.8774304E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 3.754
gdc.openalex.normalizedpercentile 0.67
gdc.opencitations.count 0
gdc.plumx.crossrefcites 5
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 5
gdc.scopus.citedcount 5
gdc.wos.citedcount 5
relation.isAuthorOfPublication ab26f923-9923-42a2-b21e-2dd862cd92be
relation.isAuthorOfPublication 533132ce-5631-4068-91c5-2806df0f65bb
relation.isAuthorOfPublication e5459272-ce6e-44cf-a186-293850946f24
relation.isAuthorOfPublication.latestForDiscovery ab26f923-9923-42a2-b21e-2dd862cd92be
relation.isOrgUnitOfPublication 28868d0c-e9a4-4de1-822f-c8df06d2086a
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication 71ce8622-7449-4a6a-8fad-44d881416546
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 28868d0c-e9a4-4de1-822f-c8df06d2086a

Files