Exploring Challenges in Deep Learning of Single-Station Ground Motion Records
| dc.contributor.author | Çaǧlar, Ü.M. | |
| dc.contributor.author | Yilmaz, B. | |
| dc.contributor.author | Türkmen, M. | |
| dc.contributor.author | Akagündüz, E. | |
| dc.contributor.author | Tileylioglu, S. | |
| dc.date.accessioned | 2025-10-15T16:30:32Z | |
| dc.date.available | 2025-10-15T16:30:32Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Contemporary deep learning models have demonstrated promising results across various applications within seismology and earthquake engineering. These models rely primarily on utilizing ground motion records for tasks such as earthquake event classification, localization, earthquake early warning systems, and structural health monitoring. However, the extent to which these models truly extract “deep” patterns from these complex time-series signals remains underexplored. In this study, our objective is to evaluate the degree to which auxiliary information, such as seismic phase arrival times or seismic station distribution within a network, dominates the process of deep learning from ground motion records, potentially hindering its effectiveness. Our experimental results reveal a strong dependence on the highly correlated Primary (P) and Secondary (S) phase arrival times. These findings expose a critical gap in the current research landscape, highlighting the lack of robust methodologies for deep learning from single-station ground motion recordings that do not rely on auxiliary inputs. © 2025 Elsevier B.V., All rights reserved. | en_US |
| dc.description.sponsorship | Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TUBITAK, (121M732); Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TUBITAK | en_US |
| dc.identifier.doi | 10.1007/s12145-025-02036-z | |
| dc.identifier.issn | 1865-0481 | |
| dc.identifier.issn | 1865-0473 | |
| dc.identifier.scopus | 2-s2.0-105018686507 | |
| dc.identifier.uri | https://doi.org/10.1007/s12145-025-02036-z | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer Science and Business Media Deutschland GmbH | en_US |
| dc.relation.ispartof | Earth Science Informatics | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | Epicentral Distance Prediction | en_US |
| dc.subject | Ground Motion Records | en_US |
| dc.subject | High-Performance Computing | en_US |
| dc.title | Exploring Challenges in Deep Learning of Single-Station Ground Motion Records | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Tileylioğlu, Salih | |
| gdc.author.scopusid | 58722419900 | |
| gdc.author.scopusid | 58952677200 | |
| gdc.author.scopusid | 58952677300 | |
| gdc.author.scopusid | 8331988500 | |
| gdc.author.scopusid | 23478717400 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Kadir Has University | en_US |
| gdc.description.departmenttemp | [Çaǧlar] Ümit Mert, Department of Modeling and Simulation, Middle East Technical University (METU), Ankara, Turkey; [Yilmaz] Baris, Department of Modeling and Simulation, Middle East Technical University (METU), Ankara, Turkey; [Türkmen] Melek, Department of Modeling and Simulation, Middle East Technical University (METU), Ankara, Turkey; [Akagündüz] Erdem, Department of Modeling and Simulation, Middle East Technical University (METU), Ankara, Turkey; [Tileylioglu] Salih, Department of Civil Engineering, Kadir Has Üniversitesi, Istanbul, Turkey | en_US |
| gdc.description.issue | 4 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.volume | 18 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W4414903079 | |
| gdc.identifier.wos | WOS:001588362200001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 1.0 | |
| gdc.oaire.influence | 2.537472E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Signal Processing (eess.SP) | |
| gdc.oaire.keywords | FOS: Computer and information sciences | |
| gdc.oaire.keywords | Computer Science - Machine Learning | |
| gdc.oaire.keywords | Computer Vision and Pattern Recognition (cs.CV) | |
| gdc.oaire.keywords | Computer Science - Computer Vision and Pattern Recognition | |
| gdc.oaire.keywords | FOS: Electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.keywords | Electrical Engineering and Systems Science - Signal Processing | |
| gdc.oaire.keywords | Machine Learning (cs.LG) | |
| gdc.oaire.popularity | 3.127705E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.18 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 8 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.scopus.citedcount | 0 | |
| gdc.virtual.author | Tileylioğlu, Salih | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | dfe85511-50a7-4e38-99e6-49745226a2e5 | |
| relation.isAuthorOfPublication.latestForDiscovery | dfe85511-50a7-4e38-99e6-49745226a2e5 | |
| relation.isOrgUnitOfPublication | 4b0883c1-acc5-4acd-aa2f-cdb841a0e58a | |
| relation.isOrgUnitOfPublication | 2457b9b3-3a3f-4c17-8674-7f874f030d96 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 4b0883c1-acc5-4acd-aa2f-cdb841a0e58a |
