Exploring Challenges in Deep Learning of Single-Station Ground Motion Records

dc.contributor.author Çaǧlar, Ü.M.
dc.contributor.author Yilmaz, B.
dc.contributor.author Türkmen, M.
dc.contributor.author Akagündüz, E.
dc.contributor.author Tileylioglu, S.
dc.date.accessioned 2025-10-15T16:30:32Z
dc.date.available 2025-10-15T16:30:32Z
dc.date.issued 2025
dc.description.abstract Contemporary deep learning models have demonstrated promising results across various applications within seismology and earthquake engineering. These models rely primarily on utilizing ground motion records for tasks such as earthquake event classification, localization, earthquake early warning systems, and structural health monitoring. However, the extent to which these models truly extract “deep” patterns from these complex time-series signals remains underexplored. In this study, our objective is to evaluate the degree to which auxiliary information, such as seismic phase arrival times or seismic station distribution within a network, dominates the process of deep learning from ground motion records, potentially hindering its effectiveness. Our experimental results reveal a strong dependence on the highly correlated Primary (P) and Secondary (S) phase arrival times. These findings expose a critical gap in the current research landscape, highlighting the lack of robust methodologies for deep learning from single-station ground motion recordings that do not rely on auxiliary inputs. © 2025 Elsevier B.V., All rights reserved. en_US
dc.description.sponsorship Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TUBITAK, (121M732); Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TUBITAK en_US
dc.identifier.doi 10.1007/s12145-025-02036-z
dc.identifier.issn 1865-0481
dc.identifier.issn 1865-0473
dc.identifier.scopus 2-s2.0-105018686507
dc.identifier.uri https://doi.org/10.1007/s12145-025-02036-z
dc.language.iso en en_US
dc.publisher Springer Science and Business Media Deutschland GmbH en_US
dc.relation.ispartof Earth Science Informatics en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Deep Learning en_US
dc.subject Epicentral Distance Prediction en_US
dc.subject Ground Motion Records en_US
dc.subject High-Performance Computing en_US
dc.title Exploring Challenges in Deep Learning of Single-Station Ground Motion Records en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Tileylioğlu, Salih
gdc.author.scopusid 58722419900
gdc.author.scopusid 58952677200
gdc.author.scopusid 58952677300
gdc.author.scopusid 8331988500
gdc.author.scopusid 23478717400
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Çaǧlar] Ümit Mert, Department of Modeling and Simulation, Middle East Technical University (METU), Ankara, Turkey; [Yilmaz] Baris, Department of Modeling and Simulation, Middle East Technical University (METU), Ankara, Turkey; [Türkmen] Melek, Department of Modeling and Simulation, Middle East Technical University (METU), Ankara, Turkey; [Akagündüz] Erdem, Department of Modeling and Simulation, Middle East Technical University (METU), Ankara, Turkey; [Tileylioglu] Salih, Department of Civil Engineering, Kadir Has Üniversitesi, Istanbul, Turkey en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 18 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4414903079
gdc.identifier.wos WOS:001588362200001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.537472E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Signal Processing (eess.SP)
gdc.oaire.keywords FOS: Computer and information sciences
gdc.oaire.keywords Computer Science - Machine Learning
gdc.oaire.keywords Computer Vision and Pattern Recognition (cs.CV)
gdc.oaire.keywords Computer Science - Computer Vision and Pattern Recognition
gdc.oaire.keywords FOS: Electrical engineering, electronic engineering, information engineering
gdc.oaire.keywords Electrical Engineering and Systems Science - Signal Processing
gdc.oaire.keywords Machine Learning (cs.LG)
gdc.oaire.popularity 3.127705E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.18
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 8
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Tileylioğlu, Salih
gdc.wos.citedcount 0
relation.isAuthorOfPublication dfe85511-50a7-4e38-99e6-49745226a2e5
relation.isAuthorOfPublication.latestForDiscovery dfe85511-50a7-4e38-99e6-49745226a2e5
relation.isOrgUnitOfPublication 4b0883c1-acc5-4acd-aa2f-cdb841a0e58a
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 4b0883c1-acc5-4acd-aa2f-cdb841a0e58a

Files