Performance Analysis of Combination of CNN-based Models with Adaboost Algorithm to Diagnose Covid-19 Disease

dc.authoridDarici, Muazzez Buket/0000-0002-0943-9381
dc.contributor.authorDarıcı, Muazzez Buket
dc.date.accessioned2023-10-19T15:11:47Z
dc.date.available2023-10-19T15:11:47Z
dc.date.issued2023
dc.department-temp[Darici, Muazzez Buket] Kadir Has Univ, Dept Elect Elect Engn, TR-34200 Istanbul, Turkiyeen_US
dc.description.abstractAt the end of 2019, Covid-19, which is a new form of Coronavirus, has spread widely all over the world. With the increasing daily cases of this disease, fast, reliable, and automatic detection systems have been more crucial. Therefore, this study proposes a new technique that combines the machine learning algorithm of Adaboost with Convolutional Neural Networks (CNN) to classify Chest X-Ray images. Basic CNN algorithm and pretrained ResNet-152 have been used separately to obtain features of the Adaboost algorithm from Chest X-Ray images. Several learning rates and the number of estimators have been used to compare these two different feature extraction methods on the Adaboost algorithm. These techniques have been applied to the dataset, which contains Chest X-Ray images labeled as Normal, Viral Pneumonia, and Covid-19. Since the used dataset is unbalanced between classes SMOTE method has been used to make the number of images of classes balance. This study shows that proposed CNN as a feature extractor on the Adaboost algorithm(learning rate of 0.1 and 25 estimators) provides higher classification performance with 94.5% accuracy, 93% precision, 94% recall, and 93% F1-score.en_US
dc.identifier.citation5
dc.identifier.doi10.2339/politeknik.901375en_US
dc.identifier.endpage190en_US
dc.identifier.issn1302-0900
dc.identifier.issn2147-9429
dc.identifier.issue1en_US
dc.identifier.scopusqualityN/A
dc.identifier.startpage179en_US
dc.identifier.urihttps://doi.org/10.2339/politeknik.901375
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5215
dc.identifier.volume26en_US
dc.identifier.wosWOS:001022165400017en_US
dc.identifier.wosqualityN/A
dc.institutionauthorDarici, Muazzez Buket
dc.khas20231019-WoSen_US
dc.language.isoenen_US
dc.publisherGazi Univen_US
dc.relation.ispartofJournal of Polytechnic-Politeknik Dergisien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAdaboosten_US
dc.subjectautomatic feature extractionen_US
dc.subjectcnnen_US
dc.subjectresnet-152en_US
dc.subjectsmoteen_US
dc.titlePerformance Analysis of Combination of CNN-based Models with Adaboost Algorithm to Diagnose Covid-19 Diseaseen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationb5442f04-afe8-48f2-86ef-b8c23df8b01e
relation.isAuthorOfPublication.latestForDiscoveryb5442f04-afe8-48f2-86ef-b8c23df8b01e

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5215.pdf
Size:
1.12 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text