Performance Analysis of Combination of Cnn-Based Models With Adaboost Algorithm To Diagnose Covid-19 Disease

dc.contributor.author Darici, Muazzez Buket
dc.contributor.other Electrical-Electronics Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2023-10-19T15:11:47Z
dc.date.available 2023-10-19T15:11:47Z
dc.date.issued 2023
dc.description.abstract At the end of 2019, Covid-19, which is a new form of Coronavirus, has spread widely all over the world. With the increasing daily cases of this disease, fast, reliable, and automatic detection systems have been more crucial. Therefore, this study proposes a new technique that combines the machine learning algorithm of Adaboost with Convolutional Neural Networks (CNN) to classify Chest X-Ray images. Basic CNN algorithm and pretrained ResNet-152 have been used separately to obtain features of the Adaboost algorithm from Chest X-Ray images. Several learning rates and the number of estimators have been used to compare these two different feature extraction methods on the Adaboost algorithm. These techniques have been applied to the dataset, which contains Chest X-Ray images labeled as Normal, Viral Pneumonia, and Covid-19. Since the used dataset is unbalanced between classes SMOTE method has been used to make the number of images of classes balance. This study shows that proposed CNN as a feature extractor on the Adaboost algorithm(learning rate of 0.1 and 25 estimators) provides higher classification performance with 94.5% accuracy, 93% precision, 94% recall, and 93% F1-score. en_US
dc.identifier.citationcount 5
dc.identifier.doi 10.2339/politeknik.901375 en_US
dc.identifier.issn 1302-0900
dc.identifier.issn 2147-9429
dc.identifier.uri https://doi.org/10.2339/politeknik.901375
dc.identifier.uri https://hdl.handle.net/20.500.12469/5215
dc.khas 20231019-WoS en_US
dc.language.iso en en_US
dc.publisher Gazi Univ en_US
dc.relation.ispartof Journal of Polytechnic-Politeknik Dergisi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Adaboost en_US
dc.subject automatic feature extraction en_US
dc.subject cnn en_US
dc.subject resnet-152 en_US
dc.subject smote en_US
dc.title Performance Analysis of Combination of Cnn-Based Models With Adaboost Algorithm To Diagnose Covid-19 Disease en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Darici, Muazzez Buket/0000-0002-0943-9381
gdc.author.institutional Darici, Muazzez Buket
gdc.author.institutional Darıcı, Muazzez Buket
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.departmenttemp [Darici, Muazzez Buket] Kadir Has Univ, Dept Elect Elect Engn, TR-34200 Istanbul, Turkiye en_US
gdc.description.endpage 190 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 179 en_US
gdc.description.volume 26 en_US
gdc.identifier.openalex W3210909974
gdc.identifier.wos WOS:001022165400017 en_US
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 10.0
gdc.oaire.influence 3.1725345E-9
gdc.oaire.isgreen true
gdc.oaire.keywords resnet-152
gdc.oaire.keywords Adaboost
gdc.oaire.keywords automatic feature extraction
gdc.oaire.keywords smote
gdc.oaire.keywords cnn
gdc.oaire.popularity 5.321866E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0203 mechanical engineering
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 0.85
gdc.openalex.normalizedpercentile 0.69
gdc.opencitations.count 7
gdc.plumx.mendeley 7
gdc.wos.citedcount 10
relation.isAuthorOfPublication b5442f04-afe8-48f2-86ef-b8c23df8b01e
relation.isAuthorOfPublication.latestForDiscovery b5442f04-afe8-48f2-86ef-b8c23df8b01e
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5215.pdf
Size:
1.12 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text