Correlation of Ternary Liquid- Equilibrium Data Using Neural Network-Based Activity Coefficient Model

gdc.relation.journal Neural Computing and Applications en_US
dc.contributor.author Özmen, Atilla
dc.date.accessioned 2019-06-27T08:03:04Z
dc.date.available 2019-06-27T08:03:04Z
dc.date.issued 2014
dc.description.abstract Liquid--liquid equilibrium (LLE) data are important in chemical industry for the design of separation equipments and it is troublesome to determine experimentally. In this paper a new method for correlation of ternary LLE data is presented. The method is implemented by using a combined structure that uses genetic algorithm (GA)--trained neural network (NN). NN coefficients that satisfy the criterion of equilibrium were obtained by using GA. At the training phase experimental concentration data and corresponding activity coefficients were used as input and output respectively. At the test phase trained NN was used to correlate the whole experimental data by giving only one initial value. Calculated results were compared with the experimental data and very low root-mean-square deviation error values are obtained between experimental and calculated data. By using this model tie-line and solubility curve data of LLE can be obtained with only a few experimental data. en_US]
dc.identifier.citationcount 6
dc.identifier.doi 10.1007/s00521-012-1227-4 en_US
dc.identifier.issn 0941-0643 en_US
dc.identifier.issn 1433-3058 en_US
dc.identifier.issn 0941-0643
dc.identifier.issn 1433-3058
dc.identifier.scopus 2-s2.0-84892857424 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/732
dc.identifier.uri https://doi.org/10.1007/s00521-012-1227-4
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Neural Computing and Applications
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject LLE en_US
dc.subject Neural network en_US
dc.subject Genetic algorithm en_US
dc.subject Activity coefficients en_US
dc.title Correlation of Ternary Liquid- Equilibrium Data Using Neural Network-Based Activity Coefficient Model en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Özmen, Atilla en_US
gdc.author.institutional Özmen, Atilla
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 346
gdc.description.issue 2
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 339 en_US
gdc.description.volume 24 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W1980124303
gdc.identifier.wos WOS:000330318500010 en_US
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.8147449E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Genetic algorithm
gdc.oaire.keywords Activity coefficients
gdc.oaire.keywords LLE
gdc.oaire.keywords Neural network
gdc.oaire.popularity 8.174555E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0204 chemical engineering
gdc.openalex.fwci 0.188
gdc.openalex.normalizedpercentile 0.61
gdc.opencitations.count 6
gdc.plumx.crossrefcites 5
gdc.plumx.mendeley 11
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.wos.citedcount 6
relation.isAuthorOfPublication cf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isAuthorOfPublication.latestForDiscovery cf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Correlation of ternary liquid--liquid equilibrium data using neural network-based activity coefficient model.pdf
Size:
462.85 KB
Format:
Adobe Portable Document Format
Description: