Electricity Theft Detection Using Machine Learning Approaches: A Case Study in Turkiye

dc.contributor.author Cetkin, E.
dc.contributor.author Emirhan Arslan, M.
dc.contributor.author Bozbuga, B.
dc.contributor.author Furkan Kalayci, B.
dc.contributor.author Ilhan Ecevit, M.
dc.contributor.author Balli, T.
dc.contributor.author Ceylan, O.
dc.date.accessioned 2025-10-15T16:30:39Z
dc.date.available 2025-10-15T16:30:39Z
dc.date.issued 2025
dc.description Bosch Engineering Centre; Energobit Company; Rohde and Schwarz; Romania S.R.L. en_US
dc.description.abstract Electricity theft, leading to financial losses and operational inefficiencies, is a significant challenge for energy utilities. In this study, advanced pre-processing, feature selection and model evaluation techniques were used to develop a machine learning model for detecting electricity theft. The dataset, which consists of over 53 million samples, was carefully preprocessed to eliminate missing values and irrelevant features. Principal component analysis (PCA) was applied to reduce dimensionality, and both undersampling and oversampling were used to avoid class imbalance. Four machine learning algorithms were evaluated: Random Forest, kNN, XGBoost and Logistic Regression. The training and evaluation of the models were performed in Jupyter Notebook using Joblib for efficient CPU-based parallel computation. The random forest with over-sampling achieved the highest performance with an accuracy of 98.23% and an F1 score of 0.90, showing the effectiveness of handling class imbalance. The results show that over-sampling the dataset leads to better results than under-sampling, emphasising the importance of this approach in detecting power theft. © 2025 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1109/EAEEIE65428.2025.11136701
dc.identifier.isbn 9798331502904
dc.identifier.scopus 2-s2.0-105016464129
dc.identifier.uri https://doi.org/10.1109/EAEEIE65428.2025.11136701
dc.identifier.uri https://hdl.handle.net/20.500.12469/7535
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof -- 34th Annual Conference of the European Association for Education in Electrical and Information Engineering, EAEEIE 2025 -- Cluj-Napoca -- 211771 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Data Imbalance en_US
dc.subject Electricity Theft en_US
dc.subject Machine Learning en_US
dc.subject Non-Technical Losses en_US
dc.subject Random Forest en_US
dc.subject Smart Meter en_US
dc.title Electricity Theft Detection Using Machine Learning Approaches: A Case Study in Turkiye en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 60106064000
gdc.author.scopusid 60105495200
gdc.author.scopusid 60105609700
gdc.author.scopusid 60105386200
gdc.author.scopusid 60106180900
gdc.author.scopusid 24823826600
gdc.author.scopusid 60105834700
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial true
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Cetkin] Erkam, Department of Management Information Systems, Kadir Has Üniversitesi, Istanbul, Turkey; [Emirhan Arslan] M., Department of Management Information Systems, Kadir Has Üniversitesi, Istanbul, Turkey; [Bozbuga] Burak, Department of Management Information Systems, Kadir Has Üniversitesi, Istanbul, Turkey; [Furkan Kalayci] B., Department of Management Information Systems, Kadir Has Üniversitesi, Istanbul, Turkey; [Ilhan Ecevit] M., Department of Management Information Systems, Kadir Has Üniversitesi, Istanbul, Turkey; [Balli] Tugce, Department of Management Information Systems, Kadir Has Üniversitesi, Istanbul, Turkey; [Can Yuksel] M., Bogaziçi EDAŞ (DSO), Istanbul, Turkey; [Cem Yilmaz] S., Bogaziçi EDAŞ (DSO), Istanbul, Turkey; [Ceylan] Oǧuzhan, Department of Management Information Systems, Kadir Has Üniversitesi, Istanbul, Turkey en_US
gdc.description.endpage 6
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W4413823307
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.7494755E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.3
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Ceylan, Oğuzhan
relation.isAuthorOfPublication b80c3194-906c-4e78-a54c-e3cd1effc970
relation.isAuthorOfPublication.latestForDiscovery b80c3194-906c-4e78-a54c-e3cd1effc970
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files