Neural Network Design for the Recurrence Prediction of Post-Operative Non-Metastatic Kidney Cancer Patients

dc.contributor.author Tander, Baran
dc.contributor.author Özmen, Atilla
dc.contributor.author Özden, Ender
dc.date.accessioned 2019-06-28T11:10:47Z
dc.date.available 2019-06-28T11:10:47Z
dc.date.issued 2016
dc.description.abstract In this paper various post-operative recurrence estimation models called nomograms for the kidney cancer patients without any metastates are introduced and novel systems based on a Multilayer Perceptron Neural Network are designed to simplify and integrate the mentioned techniques which is believed to ease the physician' s post-operative follow up procedures. The parameters effecting the recurrence are the TNM stage tumor size and nuclear (Fuhrman) grade the existance of necrosis and vascular invasion. Independent systems for two of the individual prediction methods as well as a system that combines these are designed and performance analyses are carried out to verify the reliability. © 2015 Chamber of Electrical Engineers of Turkey. en_US]
dc.identifier.doi 10.1109/ELECO.2015.7394627 en_US
dc.identifier.isbn 9786050107371
dc.identifier.scopus 2-s2.0-84963801089 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/1296
dc.identifier.uri https://doi.org/10.1109/ELECO.2015.7394627
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 2015 9th International Conference on Electrical and Electronics Engineering (ELECO)
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.title Neural Network Design for the Recurrence Prediction of Post-Operative Non-Metastatic Kidney Cancer Patients en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Tander, Baran en_US
gdc.author.institutional Özmen, Atilla en_US
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 165
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.startpage 162 en_US
gdc.identifier.openalex W2284799923
gdc.identifier.wos WOS:000380410800032 en_US
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.downloads 0
gdc.oaire.impulse 1.0
gdc.oaire.influence 3.3746428E-9
gdc.oaire.isgreen true
gdc.oaire.keywords N/A
gdc.oaire.popularity 1.995852E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.views 3
gdc.openalex.collaboration National
gdc.openalex.fwci 0.25488625
gdc.openalex.normalizedpercentile 0.64
gdc.opencitations.count 3
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 6
gdc.relation.journal 2015 9th International Conference on Electrical and Electronics Engineering (ELECO)
gdc.scopus.citedcount 6
gdc.virtual.author Tander, Baran
gdc.virtual.author Özmen, Atilla
gdc.wos.citedcount 1
relation.isAuthorOfPublication 75e36d40-1e6e-401f-b656-5894d3bd22e9
relation.isAuthorOfPublication cf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isAuthorOfPublication.latestForDiscovery 75e36d40-1e6e-401f-b656-5894d3bd22e9
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Neural Network Design for the Recurrence Prediction of Post-Operative Non-Metastatic Kidney Cancer Patients.pdf
Size:
155.18 KB
Format:
Adobe Portable Document Format
Description: