Fuzzy-Neural Networks for Medical Diagnosis

gdc.relation.journal International Journal of Reasoning-based Intelligent Systems en_US
gdc.relation.journal International Journal of Reasoning-based Intelligent Systems en_US
dc.contributor.author Şenol, Canan
dc.contributor.author Yıldırım, Tülay
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2019-06-28T11:11:26Z
dc.date.available 2019-06-28T11:11:26Z
dc.date.issued 2010
dc.description.abstract In this paper a novel fuzzy-neural network architecture is proposed and the algorithm is developed. Using this new architecture fuzzy-CSFNN fuzzy-MLP and fuzzy-RBF configurations were constituted and their performances have been compared on medical diagnosis problems. Here conic section function neural network (CSFNN) is also a hybrid neural network structure that unifies the propagation rules of multilayer perceptron (MLP) and radial basis function (RBF) neural networks at a unique network by its distinctive propagation rules. That means CSFNNs accommodate MLPs and RBFs in its own self-network structure. The proposed hybrid fuzzy-neural networks were implemented in a well-known benchmark medical problems with real clinical data for thyroid disorders breast cancer and diabetes disease diagnosis. Simulation results show that proposed hybrid structures outperform both MATLAB-ANFIS and non-hybrid structures. © 2010 Inderscience Enterprises Ltd. en_US]
dc.identifier.citationcount 1
dc.identifier.doi 10.1504/IJRIS.2010.036873 en_US
dc.identifier.issn 1755-0556 en_US
dc.identifier.issn 1755-0556
dc.identifier.issn 1755-0564
dc.identifier.scopus 2-s2.0-84952972764 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/1581
dc.identifier.uri https://doi.org/10.1504/IJRIS.2010.036873
dc.language.iso en en_US
dc.relation.ispartof International Journal of Reasoning-based Intelligent Systems
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject fuzzy neural networks en_US
dc.subject fuzzy-CSFNN en_US
dc.subject fuzzy-MLP en_US
dc.subject fuzzy-neural hybrid schemes en_US
dc.subject fuzzy-RBF en_US
dc.subject medical diagnosis en_US
dc.title Fuzzy-Neural Networks for Medical Diagnosis en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Şenol, Canan en_US
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 271
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 265 en_US
gdc.description.volume 2 en_US
gdc.identifier.openalex W2139967223
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.7109937E-9
gdc.oaire.isgreen false
gdc.oaire.keywords medical diagnosis
gdc.oaire.keywords fuzzy-MLP
gdc.oaire.keywords fuzzy-neural hybrid schemes
gdc.oaire.keywords fuzzy neural networks
gdc.oaire.keywords fuzzy-RBF
gdc.oaire.keywords fuzzy-CSFNN
gdc.oaire.popularity 6.631924E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.57
gdc.opencitations.count 1
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery b20623fc-1264-4244-9847-a4729ca7508c

Files