Fuzzy-Neural Networks for Medical Diagnosis
| gdc.relation.journal | International Journal of Reasoning-based Intelligent Systems | en_US |
| gdc.relation.journal | International Journal of Reasoning-based Intelligent Systems | en_US |
| dc.contributor.author | Şenol, Canan | |
| dc.contributor.author | Yıldırım, Tülay | |
| dc.contributor.other | 01. Kadir Has University | |
| dc.date.accessioned | 2019-06-28T11:11:26Z | |
| dc.date.available | 2019-06-28T11:11:26Z | |
| dc.date.issued | 2010 | |
| dc.description.abstract | In this paper a novel fuzzy-neural network architecture is proposed and the algorithm is developed. Using this new architecture fuzzy-CSFNN fuzzy-MLP and fuzzy-RBF configurations were constituted and their performances have been compared on medical diagnosis problems. Here conic section function neural network (CSFNN) is also a hybrid neural network structure that unifies the propagation rules of multilayer perceptron (MLP) and radial basis function (RBF) neural networks at a unique network by its distinctive propagation rules. That means CSFNNs accommodate MLPs and RBFs in its own self-network structure. The proposed hybrid fuzzy-neural networks were implemented in a well-known benchmark medical problems with real clinical data for thyroid disorders breast cancer and diabetes disease diagnosis. Simulation results show that proposed hybrid structures outperform both MATLAB-ANFIS and non-hybrid structures. © 2010 Inderscience Enterprises Ltd. | en_US] |
| dc.identifier.citationcount | 1 | |
| dc.identifier.doi | 10.1504/IJRIS.2010.036873 | en_US |
| dc.identifier.issn | 1755-0556 | en_US |
| dc.identifier.issn | 1755-0556 | |
| dc.identifier.issn | 1755-0564 | |
| dc.identifier.scopus | 2-s2.0-84952972764 | en_US |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/1581 | |
| dc.identifier.uri | https://doi.org/10.1504/IJRIS.2010.036873 | |
| dc.language.iso | en | en_US |
| dc.relation.ispartof | International Journal of Reasoning-based Intelligent Systems | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | fuzzy neural networks | en_US |
| dc.subject | fuzzy-CSFNN | en_US |
| dc.subject | fuzzy-MLP | en_US |
| dc.subject | fuzzy-neural hybrid schemes | en_US |
| dc.subject | fuzzy-RBF | en_US |
| dc.subject | medical diagnosis | en_US |
| dc.title | Fuzzy-Neural Networks for Medical Diagnosis | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Şenol, Canan | en_US |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
| gdc.description.endpage | 271 | |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q4 | |
| gdc.description.startpage | 265 | en_US |
| gdc.description.volume | 2 | en_US |
| gdc.identifier.openalex | W2139967223 | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.7109937E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | medical diagnosis | |
| gdc.oaire.keywords | fuzzy-MLP | |
| gdc.oaire.keywords | fuzzy-neural hybrid schemes | |
| gdc.oaire.keywords | fuzzy neural networks | |
| gdc.oaire.keywords | fuzzy-RBF | |
| gdc.oaire.keywords | fuzzy-CSFNN | |
| gdc.oaire.popularity | 6.631924E-10 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.57 | |
| gdc.opencitations.count | 1 | |
| gdc.plumx.mendeley | 3 | |
| gdc.plumx.scopuscites | 2 | |
| gdc.scopus.citedcount | 2 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | b20623fc-1264-4244-9847-a4729ca7508c |